本文主要是介绍清风数学建模学习笔记(二)TOPSIS法练习题附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目:评价下表中20条河流的水质情况。
注:含氧量越高越好;PH值越接近7越好;细菌总数越少越好;植物性营养物量介于10‐20之间最佳,超过20或低于10均不好。
首先TOPSIS方法步骤如下:
1.判断是否需要正向化
2.对正向化后的矩阵进行标准化
3.计算与最大值的距离和最小值的距离,并算出得分
一、判断是否需要正向化
由表格可知,含氧量是越高越好所以不需要处理,其他三个指标都需要正向话处理。
首先把表格数据加载到matlab中并保存为mat文件,加载文件
load data_water_quality.mat
判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']);if Judge == 1Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]% 注意,Position和Type是两个同维度的行向量for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量enddisp('正向化后的矩阵 X = ')disp(X)
end
对调用的函数
if type == 1 %极小型disp(['第' num2str(i) '列是极小型,正在正向化'] )posit_x = Min2Max(x); %调用Min2Max函数来正向化disp(['第' num2str(i) '列极小型正向化处理完成'] )disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')elseif type == 2 %中间型disp(['第' num2str(i) '列是中间型'] )best = input('请输入最佳的那一个值: ');posit_x = Mid2Max(x,best);disp(['第' num2str(i) '列中间型正向化处理完成'] )disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')elseif type == 3 %区间型disp(['第' num2str(i) '列是区间型'] )a = input('请输入区间的下界: ');b = input('请输入区间的上界: '); posit_x = Inter2Max(x,a,b);disp(['第' num2str(i) '列区间型正向化处理完成'] )disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')elsedisp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')end
end
function [posit_x] = Min2Max(x)posit_x = max(x) - x;%posit_x = 1 ./ x; %如果x全部都大于0,也可以这样正向化
end
function [posit_x] = Mid2Max(x,best)M = max(abs(x-best));posit_x = 1 - abs(x-best) / M;
end
function [posit_x] = Inter2Max(x,a,b)r_x = size(x,1); % row of x M = max([a-min(x),max(x)-b]);posit_x = zeros(r_x,1); %zeros函数用法: zeros(3) zeros(3,1) ones(3)% 初始化posit_x全为0 初始化的目的是节省处理时间for i = 1: r_xif x(i) < aposit_x(i) = 1-(a-x(i))/M;elseif x(i) > bposit_x(i) = 1-(x(i)-b)/M;elseposit_x(i) = 1;endend
end
二、对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)
三、计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ],2) .^ 0.5; % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ],2) .^ 0.5; % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N); % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')
此文章为记录自己学习建模学习笔记,仅供学习。大家一起努力加油❗
这篇关于清风数学建模学习笔记(二)TOPSIS法练习题附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!