机器学习(hadoop实战)01: 家电故障备件储备预测分析

2024-03-03 23:08

本文主要是介绍机器学习(hadoop实战)01: 家电故障备件储备预测分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

家电故障备件储备预测分析

本例来源于《Hadoop大数据分析与挖掘实战》第十二章家电故障备件储备预测分析。

数据集:请留言,我会私发。

  • 问题:针对手机数据,要求从服务商代码中提取出地区编码,对每个地区进行故障率的预测,从而做到备件的提前储备。

  • 问题分析:从问题描述可以看出,可以看作是对每个地区进行故障的推荐,地区编码作为用户id,故障代码作为项目id,现有数据集中故障率作为评分,使用协同过滤算法进行故障的推荐。

  • 难点:

  1. 需要把故障描述转化为故障代码,故障描述是用户对故障的描述,所以各种各样,很难做到统一,需要提取其中的关键字。
  2. 现有数据集中故障率的计算。
  3. 在计算的时候,地区编码、故障代码都是字符串,但是协同过滤算法会把他们作为long类型处理,会出现数据失真的情况。

本次主要针对手机故障进行分析。
分析流程:

  • 第一步:查看数据集。本次主要分析手机故障,所以只需要excel中Sheet2中的数据(见图1.1),由于hadoop没有读取excel的InputFormat(我自己实现了一个,但是存在bug),所以采用了先把excel导出为txt文件,然后再处理的办法。数据集

    图1.1

  • 第二步:写mr程序计算故障率,map阶段读取文件。按照 \t 切分字符串,过滤掉不符合格式的数据(见代码2.1),然后从中取出服务商代码、故障描述。从服务商代码中取出地区代码,根据手机故障原因标准准则(见图2.3),把故障描述转化为故障代码(见代码2.2),然后写出。

代码2.1/*** 产品大类 品牌 产品型号 序列号 内机编码 服务商代码 受理时间 派工时间 故障原因代码 故障原因描述 维修措施 反映问题描述*/static class ParseMapper extends Mapper<LongWritable, Text, Text, IntWritable> {Text k = new Text();IntWritable v = new IntWritable();int sum = 0;@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 删除空行if (!StringUtils.isBlank(value.toString())) {String[] fields = value.toString().split("\t");if (fields.length < 12) {System.out.println(Arrays.toString(fields));sum ++;}// 如果服务商代码或者反映问题描述为空,则删除行if (fields.length >=12 && !StringUtils.isBlank(fields[5]) && !StringUtils.isBlank(fields[11])) {// 服务商代码String districtCode = fields[5];// 反映问题描述String faultTxt = fields[11];try {if (districtCode.split("-").length >= 3) {// 从服务商代码中取出地区编码String district = districtCode.split("-")[2];// 把反映问题描述转化为故障代码int convertCode = convertCode(faultTxt);k.set(district);v.set(convertCode);context.write(k, v);}} catch (Exception e) {e.printStackTrace();}}}}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {System.out.println("sum: " + sum);}}
代码2.2/*** 把反映问题描述转化为故障类型代码* @param faultText 反映问题描述* @return 故障类型代码*/public static int convertCode(String faultText) {int code = 0;String fault = faultText.toLowerCase();if (fault.contains("lcd")) {code = 2;} else if (fault.contains("键") && !fault.contains("印错")) {code = 3;} else if (fault.contains("网络") || fault.contains("服务")|| fault.contains("信号") || fault.contains("连接")|| fault.contains("功率低")) {code = 5;} else if (fault.contains("通话") || fault.contains("听筒")|| fault.contains("送话")) {code = 4;} else if (fault.contains("灯")) {code = 6;} else if (fault.contains("蓝牙")) {code = 7;} else if (fault.contains("不吃卡") || fault.contains("不识卡")|| fault.contains("不读卡")) {code = 8;} else if (fault.contains("电池") || fault.contains("耗电")) {code = 9;} else if (fault.contains("拍照") || fault.contains("照相")|| fault.contains("摄像头")) {code = 10;} else if (fault.contains("触屏")) {code = 11;} else if (fault.contains("振动")) {code = 12;} else if (fault.contains("mp3") || fault.contains("音")&& !fault.contains("键") && !fault.contains("喇叭")) {code = 13;} else if (fault.contains("喇叭") || fault.contains("耳机")) {code = 14;} else if (fault.contains("充电")) {code = 15;} else if (fault.contains("gps") || fault.contains("卫星")) {code = 16;} else if (fault.contains("壳") || fault.contains("螺丝")|| fault.contains("缝隙") || fault.contains("印错")) {code = 17;} else if (fault.contains("开机") || fault.contains("死机")|| fault.contains("开关机") || fault.contains("开(关)机")) {code = 1;} else {code = 18;}return code;}

手机故障原因标准准则

图2.3(部分)

  • 第三步:reduce阶段计算故障率。map阶段写出的时候把地区编码作为key,所以在reduce阶段取数据的时候,会把相同地区编码的数据作为一组,一起拿过来。然后针对每个地区,用每种故障数量除以总故障数量,得到每个地区各种故障的故障率。应该除以该地区的总故障率,因为我们使用协同过滤算法,研究的是各个地区之间故障率的相似度。计算完写出到文件。
    static class RateReducer extends Reducer<Text, IntWritable, Text, DoubleWritable> {String districtCode = null;Map<Integer, Integer> map = new HashMap<>();double sum = 0D;@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {districtCode = key.toString();for (IntWritable value : values) {int faultCode = value.get();// 如果map中没有此值,则放入1,有,则在此基础加1map.merge(faultCode, 1, Integer::sum);sum++;}// 写出for (Map.Entry<Integer, Integer> entry : map.entrySet()) {double rate = entry.getValue() / sum;Text outKey = new Text(districtCode + "\t" + entry.getKey());DoubleWritable value = new DoubleWritable(rate);context.write(outKey, value);}// 初始化值map.clear();sum = 0;districtCode = null;}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {map.clear();sum = 0;districtCode = null;}}
  • 第四步:根据现有故障率,使用mahout协同过滤算法进行故障率预测。
    在处理之前,先使用MemoryIDMigrator把地区编码转化成了long,防止模型把数据从string转为long,造成前面的0缺失的问题,预测的时候,再把地区编码从long映射回string。具体代码如下:
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.impl.model.MemoryIDMigrator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;import java.io.*;
import java.util.HashMap;
import java.util.List;
import java.util.Map;/*** @author affable* @description 故障率预测的协同过滤算法* @date 2020-04-21 19:12*/
public class FaultPredict {/*** 推荐的个数*/private static final int RECOMMEND_NUM = 18;/*** 用户即地区代码* @param args 程序输入参数*/public static void main(String[] args) throws IOException, TasteException {// *******************************处理开始******************************************Map<Long, String> faultMap = loadFault();// 使用推荐模型之前,对数据的districtCode映射成long类型// 防止模型把districtCode转为long,出现数据异常String filePath = "data/faultRate/part-r-00000";File dealFile = new File("data/faultRateDeal.csv");MemoryIDMigrator memoryIDMigrator = new MemoryIDMigrator();FileWriter dealWriter = new FileWriter(dealFile, true);FileReader reader = new FileReader(filePath);BufferedReader bufferedReader = new BufferedReader(reader);String line = null;while ((line = bufferedReader.readLine()) != null) {String[] fields = line.split("\t");long districtCodeLong = memoryIDMigrator.toLongID(fields[0]);memoryIDMigrator.storeMapping(districtCodeLong, fields[0]);dealWriter.write(districtCodeLong + "," + fields[1] + "," + fields[2] + "\n");dealWriter.flush();}dealWriter.close();bufferedReader.close();reader.close();// ***********************************处理完成**************************************// **********************************模型推荐开始************************************// 创建包含用户评分的协同过滤模型FileDataModel dataModel = new FileDataModel(dealFile);// 指定使用欧式距离UserSimilarity userSimilarity = new EuclideanDistanceSimilarity(dataModel);// 指定临近算法// 指定距离最近的一定百分比的用户作为邻居// 百分比: 20%UserNeighborhood userNeighborhood = new ThresholdUserNeighborhood(0.2, userSimilarity, dataModel);// 创建推荐器Recommender recommender = new GenericUserBasedRecommender(dataModel, userNeighborhood, userSimilarity);// 获取所有的用户LongPrimitiveIterator userIDIter = dataModel.getUserIDs();StringBuilder recommendedRecord = new StringBuilder();while (userIDIter.hasNext()) {// 获取针对每个用户的推荐long userId = userIDIter.nextLong();List<RecommendedItem> recommendList = recommender.recommend(userId, RECOMMEND_NUM);for (RecommendedItem recommendedItem : recommendList) {recommendedRecord.append(String.format("%s,%s,%f\n", memoryIDMigrator.toStringID(userId), faultMap.get(recommendedItem.getItemID()), recommendedItem.getValue()));}}// **********************************模型推荐结束************************************// 写出推荐结果到文件File recommendFile = new File("data/recommend.csv");FileWriter writer = new FileWriter(recommendFile, true);writer.write(recommendedRecord.toString());writer.flush();writer.close();}/*** 加载故障代码对应的故障类型map* @return map*/private static Map<Long, String> loadFault() {Map<Long, String> faultMap = new HashMap<>(18);faultMap.put(1L, "开机故障");faultMap.put(2L, "LCD显示故障");faultMap.put(3L, "按键故障");faultMap.put(4L, "通话故障");faultMap.put(5L, "网络故障");faultMap.put(6L, "灯故障");faultMap.put(7L, "蓝牙机故障");faultMap.put(8L, "不读卡");faultMap.put(9L, "电池故障");faultMap.put(10L, "拍照故障");faultMap.put(11L, "触屏故障");faultMap.put(12L, "振动故障");faultMap.put(13L, "MP3、收音故障");faultMap.put(14L, "喇叭故障");faultMap.put(15L, "充电故障");faultMap.put(16L, "GPRS故障");faultMap.put(17L, "外观故障");faultMap.put(18L, "其他故障");return faultMap;}}

如有需要完整代码,请留言。

这篇关于机器学习(hadoop实战)01: 家电故障备件储备预测分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771210

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置