unity 数学 如何计算线和平面的交点

2024-03-03 20:52

本文主要是介绍unity 数学 如何计算线和平面的交点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

已知一个平面上的一点P0和法向量n,一条直线上的点L0和方向L,求该直线与该平面的交点P

如下图

首先我们要知道向量归一化点乘之后得到就是两个向量的夹角的余弦值,如果两个向量相互垂直则值是0,小于0则两个向量的夹角大于90度,大于0则两个向量夹角小于90度,所以可以得出一下公式1:(p-p0)*n=0

而由于交点p是属于直线上的一点,所以我们能推倒出公式2:P=L0+dL;

然后我们把公式2导入到公式1得到:

      (L0+dL-P0)*n=0

      (L0-P0)*n+dL*n=0(点乘满足分配率)

      (p0-L0)*n=dL*n

       d=(p0-L0)*n/L*n(点乘满足结合律)

     只要我们求出d的值带入公式2就能求出交点P.

    /// <summary>/// 计算直线与平面的交点/// </summary>/// <param name="point">直线上某一点</param>/// <param name="direct">直线的方向</param>/// <param name="planeNormal">垂直于平面的的向量</param>/// <param name="planePoint">平面上的任意一点</param>/// <returns></returns>private bool GetIntersectWithLineAndPlane(Vector3 point, Vector3 direct, Vector3 planeNormal, Vector3 planePoint,out Vector3 result){result = Vector3.zero; //要注意直线和平面平行的情况float d1 = Vector3.Dot(direct.normalized, planeNormal);if(d1 == 0)return false;float d2 = Vector3.Dot(planePoint - point, planeNormal);float d3 = d2 / d1;result = d3 * direct.normalized + point;return true;}

这篇关于unity 数学 如何计算线和平面的交点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770890

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

圆与线段的交点

poj 3819  给出一条线段的两个端点,再给出n个圆,求出这条线段被所有圆覆盖的部分占了整条线段的百分比。 圆与线段的交点 : 向量AB 的参数方程  P = A + t * (B - A)      0<=t<=1 ; 将点带入圆的方程即可。  注意: 有交点 0 <= t <= 1 ; 此题求覆盖的部分。 则 若求得 t  满足 ; double ask(d