详解动态规划(算法村第十九关青铜挑战)

2024-03-03 20:36

本文主要是介绍详解动态规划(算法村第十九关青铜挑战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不同路径

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

递归

递归的含义就是处理方法不变,但是问题的规模减少。

public int uniquePaths(int m, int n)
{//如果只剩一行或者一列,那只有一个方向,一条路径了if (m == 1 || n == 1)return 1;//往右走一步,问题规模缩小成 m * (n-1) 的网格//往下走一步,问题规模缩小成 (m-1) * n 的网格return uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
}

但在此题中普通的递归解法超时,原因是存在大量重复计算。

在这里插入图片描述

例如,不管是从(0,1)还是(1,0)从来到(1,1),接下来从(1,1)到终点都会有2种走法,不必每次都重新计算。而普通的递归只能一遍又一遍地计算从(1,1)到终点有多少种走法。

利用二维数组进行记忆化搜索

在这里插入图片描述

每个格子的数字表示从起点开始到达当前位置的路径数,计算总路径时可以先查一下记录,如果有记录就直接读,没有再计算,这样就可以避免大量重复计算,这就是记忆化搜索

  • 第一行和第一列都是1。
  • 其他格子的值 = 左侧格子的值 + 上方格子格子的值。

如图中的4,由上面的1和左侧的3计算而来,15由上侧的5和左侧的10计算而来。

public int uniquePaths_2(int m, int n)
{int[][] record = new int[m][n];record[0][0] = 1;for (int row = 0; row < m; ++row)for (int col = 0; col < n; ++col){if (row > 0 && col > 0)record[row][col] = record[row - 1][col] + record[row][col - 1];else if (col > 0)	//第一行格子record[row][col] = record[row][col - 1];else if(row > 0)	//第一列格子record[row][col] = record[row - 1][col];}return record[m - 1][n - 1];
}

将二维数组优化为一维数组

第一步,用1填充一维数组。

在这里插入图片描述

第二步,从头遍历数组,除了第一个位置,位置的新值 = 前一个位置的值 + 位置的原始值 。其实,在二维数组中,位置的原始值就在位置新值的上方。

在这里插入图片描述

重复第二步

在这里插入图片描述

把三个一维数组拼接起来,发现恰好跟上面的二维数组一致:

在这里插入图片描述

所以,路径总数就是一维数组最后一个元素的值。

这种反复更新的一维数组就是滚动数组。

public int uniquePaths_3(int m, int n)
{int[] dp = new int[n];Arrays.fill(dp,1);for (int row = 1; row < m; row++)for (int col = 1; col < n; col++)dp[col] = dp[col - 1] + dp[col];return dp[n - 1];
}

总结

这个题目涵盖了dp的多个方面,比如重复子问题(递归)、记忆化搜索(将已经计算好的结果存入数组,后面用到就直接读取)、滚动数组(二维数组优化为一维数组)。

最小路径和

64. 最小路径和 - 力扣(LeetCode)

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步

public int minPathSum(int[][] grid)
{//逐行遍历,更新 grid 的格值,作为[在方向约束下,从起点到当前格的最小路经和]for (int row = 0; row < grid.length; row++)for (int col = 0; col < grid[row].length; col++){if (row == 0 && col == 0)continue;else if (row == 0)  //只能往右走grid[row][col] = grid[row][col - 1] + grid[row][col];else if (col == 0)  //只能往下走grid[row][col] = grid[row - 1][col] + grid[row][col];else                //从[往右、往下]两个方向挑路径和最小的走grid[row][col] = Math.min(grid[row][col - 1], grid[row - 1][col]) + grid[row][col];}return grid[grid.length - 1][grid[0].length - 1];
}

在这里插入图片描述

我们完全不需要建立 dp 矩阵浪费额外空间,直接遍历 grid 并修改其值即可。因为原 grid 矩阵元素中被覆盖为 dp 元素后(都处于当前遍历点的左上方),不会再被使用到。

三角形最小路径和

120. 三角形最小路径和 - 力扣(LeetCode)

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 ii + 1

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即 2 + 3 + 5 + 1 = 11)。

自底向上 dp + 空间优化

public int minimumTotal(List<List<Integer>> triangle)
{int[] dp = new int[triangle.size() + 1];  //多出一格是为了dp数组能够获取triangle最底层的值// 从最底层开始 dpfor (int row = triangle.size() - 1; row >= 0; row--)for (int col = 0; col < row + 1; col++) //第 row 行有 row + 1个数dp[col] = Math.min(dp[col], dp[col + 1]) + triangle.get(row).get(col);//顶点储存着从最底层到顶点的最小路径和return dp[0];
}

理论上可以直接修改triangle的值而不用额外申请空间,但由于triangle的类型是List<List<Integer>>,修改起来很繁琐,故还是选择申请这O(n)dp空间

区分动态规划和回溯

  • 动态规划:只关心当前结果是什么,而不记录结果怎么来的,无法获得完整的路径
  • 回溯:能够获得一条乃至所有满足要求的完整路径。

动态规划题目的三种基本的类型

  1. 计数相关。例如求有多少种方式走到右下角,有多少种方式选出K个数使得…,等等。
  2. 求最大最小值,最多最少。例如最大数字和、最长上升子序列长度、最长公共子序列、最长回文序列等等。
  3. 求存在性。例如取石子游戏,先手是否必胜;能不能选出K个数使得…,等等。

解决问题的模板

  1. 确定状态和子问题。一些题目用逆向思维分析会更容易。
  2. 确定状态转移方程,也就是确定 dp 数组要如何更新状态(或者直接在原数组上改动)。
  3. 确定初始条件和边界情况。
  4. 按照顺序计算。

这篇关于详解动态规划(算法村第十九关青铜挑战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770827

相关文章

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化