详解动态规划(算法村第十九关青铜挑战)

2024-03-03 20:36

本文主要是介绍详解动态规划(算法村第十九关青铜挑战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不同路径

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

递归

递归的含义就是处理方法不变,但是问题的规模减少。

public int uniquePaths(int m, int n)
{//如果只剩一行或者一列,那只有一个方向,一条路径了if (m == 1 || n == 1)return 1;//往右走一步,问题规模缩小成 m * (n-1) 的网格//往下走一步,问题规模缩小成 (m-1) * n 的网格return uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
}

但在此题中普通的递归解法超时,原因是存在大量重复计算。

在这里插入图片描述

例如,不管是从(0,1)还是(1,0)从来到(1,1),接下来从(1,1)到终点都会有2种走法,不必每次都重新计算。而普通的递归只能一遍又一遍地计算从(1,1)到终点有多少种走法。

利用二维数组进行记忆化搜索

在这里插入图片描述

每个格子的数字表示从起点开始到达当前位置的路径数,计算总路径时可以先查一下记录,如果有记录就直接读,没有再计算,这样就可以避免大量重复计算,这就是记忆化搜索

  • 第一行和第一列都是1。
  • 其他格子的值 = 左侧格子的值 + 上方格子格子的值。

如图中的4,由上面的1和左侧的3计算而来,15由上侧的5和左侧的10计算而来。

public int uniquePaths_2(int m, int n)
{int[][] record = new int[m][n];record[0][0] = 1;for (int row = 0; row < m; ++row)for (int col = 0; col < n; ++col){if (row > 0 && col > 0)record[row][col] = record[row - 1][col] + record[row][col - 1];else if (col > 0)	//第一行格子record[row][col] = record[row][col - 1];else if(row > 0)	//第一列格子record[row][col] = record[row - 1][col];}return record[m - 1][n - 1];
}

将二维数组优化为一维数组

第一步,用1填充一维数组。

在这里插入图片描述

第二步,从头遍历数组,除了第一个位置,位置的新值 = 前一个位置的值 + 位置的原始值 。其实,在二维数组中,位置的原始值就在位置新值的上方。

在这里插入图片描述

重复第二步

在这里插入图片描述

把三个一维数组拼接起来,发现恰好跟上面的二维数组一致:

在这里插入图片描述

所以,路径总数就是一维数组最后一个元素的值。

这种反复更新的一维数组就是滚动数组。

public int uniquePaths_3(int m, int n)
{int[] dp = new int[n];Arrays.fill(dp,1);for (int row = 1; row < m; row++)for (int col = 1; col < n; col++)dp[col] = dp[col - 1] + dp[col];return dp[n - 1];
}

总结

这个题目涵盖了dp的多个方面,比如重复子问题(递归)、记忆化搜索(将已经计算好的结果存入数组,后面用到就直接读取)、滚动数组(二维数组优化为一维数组)。

最小路径和

64. 最小路径和 - 力扣(LeetCode)

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步

public int minPathSum(int[][] grid)
{//逐行遍历,更新 grid 的格值,作为[在方向约束下,从起点到当前格的最小路经和]for (int row = 0; row < grid.length; row++)for (int col = 0; col < grid[row].length; col++){if (row == 0 && col == 0)continue;else if (row == 0)  //只能往右走grid[row][col] = grid[row][col - 1] + grid[row][col];else if (col == 0)  //只能往下走grid[row][col] = grid[row - 1][col] + grid[row][col];else                //从[往右、往下]两个方向挑路径和最小的走grid[row][col] = Math.min(grid[row][col - 1], grid[row - 1][col]) + grid[row][col];}return grid[grid.length - 1][grid[0].length - 1];
}

在这里插入图片描述

我们完全不需要建立 dp 矩阵浪费额外空间,直接遍历 grid 并修改其值即可。因为原 grid 矩阵元素中被覆盖为 dp 元素后(都处于当前遍历点的左上方),不会再被使用到。

三角形最小路径和

120. 三角形最小路径和 - 力扣(LeetCode)

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 ii + 1

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即 2 + 3 + 5 + 1 = 11)。

自底向上 dp + 空间优化

public int minimumTotal(List<List<Integer>> triangle)
{int[] dp = new int[triangle.size() + 1];  //多出一格是为了dp数组能够获取triangle最底层的值// 从最底层开始 dpfor (int row = triangle.size() - 1; row >= 0; row--)for (int col = 0; col < row + 1; col++) //第 row 行有 row + 1个数dp[col] = Math.min(dp[col], dp[col + 1]) + triangle.get(row).get(col);//顶点储存着从最底层到顶点的最小路径和return dp[0];
}

理论上可以直接修改triangle的值而不用额外申请空间,但由于triangle的类型是List<List<Integer>>,修改起来很繁琐,故还是选择申请这O(n)dp空间

区分动态规划和回溯

  • 动态规划:只关心当前结果是什么,而不记录结果怎么来的,无法获得完整的路径
  • 回溯:能够获得一条乃至所有满足要求的完整路径。

动态规划题目的三种基本的类型

  1. 计数相关。例如求有多少种方式走到右下角,有多少种方式选出K个数使得…,等等。
  2. 求最大最小值,最多最少。例如最大数字和、最长上升子序列长度、最长公共子序列、最长回文序列等等。
  3. 求存在性。例如取石子游戏,先手是否必胜;能不能选出K个数使得…,等等。

解决问题的模板

  1. 确定状态和子问题。一些题目用逆向思维分析会更容易。
  2. 确定状态转移方程,也就是确定 dp 数组要如何更新状态(或者直接在原数组上改动)。
  3. 确定初始条件和边界情况。
  4. 按照顺序计算。

这篇关于详解动态规划(算法村第十九关青铜挑战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770827

相关文章

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情