CTPN源码解析1-数据预处理split_label.py

2024-03-03 18:32

本文主要是介绍CTPN源码解析1-数据预处理split_label.py,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文本检测算法一:CTPN

CTPN源码解析1-数据预处理split_label.py

CTPN源码解析2-代码整体结构和框架

CTPN源码解析3.1-model()函数解析

CTPN源码解析3.2-loss()函数解析

CTPN源码解析4-损失函数

CTPN源码解析5-文本线构造算法构造文本行

CTPN训练自己的数据集

 

由于解析的这个CTPN代码是被banjin-xjyeragonruan大神重新封装过的,所以代码整体结构非常的清晰,简洁!不像上次解析FasterRCNN的代码那样跳来跳去,没跳几步脑子就被跳乱了[捂脸],向大神致敬!PS:里面肯定会有理解和注释错误的,欢迎批评指正!

解析源码地址:https://github.com/eragonruan/text-detection-ctpn

知乎:从代码实现的角度理解CTPN:https://zhuanlan.zhihu.com/p/49588885

知乎:理解文本检测网络CTPN:https://zhuanlan.zhihu.com/p/77883736

知乎:场景文字检测—CTPN原理与实现:https://zhuanlan.zhihu.com/p/34757009

 

自己先标注的数据集格式如下:

每一行表示一个文本标记框,顺序为(x1,y1,x2,y2,x3,y3,x4,y4) ,分别是矩形框的左上点(x1,y1),右上点(x2,y2),右下点(x3,y3)左下点(x4,y4)

split_label.py-》这玩意要干嘛呢?

  1. 就是将上面的每一个标记框都给拆分成宽为16的矩形框(两头的可以不为16)。
  2. 同时将图像缩放成指定大小,并保证宽和高都是16的整数倍。

拆分完后的矩形框变成这个样子:

 将这些框画在图上是下面这个样子:

(可以看出,两边的框,宽度不必严格等于16)

108行代码如下,没啥好说的:

import os
import sysimport cv2 as cv
import numpy as np
from tqdm import tqdmsys.path.append(os.getcwd())
from utils.prepare.utils import orderConvex, shrink_polyDATA_FOLDER = "/CTPN/My_text-detection-ctpn-banjin-dev/MyGenData/imgtxt/"
OUTPUT = "/CTPN/My_text-detection-ctpn-banjin-dev/data/dataset/mlt/"
MAX_LEN = 1200
MIN_LEN = 600im_fns = os.listdir(os.path.join(DATA_FOLDER, "image"))
im_fns.sort()if not os.path.exists(os.path.join(OUTPUT, "image")):os.makedirs(os.path.join(OUTPUT, "image"))
if not os.path.exists(os.path.join(OUTPUT, "label")):os.makedirs(os.path.join(OUTPUT, "label"))for im_fn in tqdm(im_fns):try:_, fn = os.path.split(im_fn)bfn, ext = os.path.splitext(fn)if ext.lower() not in ['.jpg', '.png']:continuegt_path = os.path.join(DATA_FOLDER, "label", 'gt_' + bfn + '.txt')img_path = os.path.join(DATA_FOLDER, "image", im_fn)img = cv.imread(img_path)  #读取图像img_size = img.shape  #获取图像的[h,w,c]im_size_min = np.min(img_size[0:2]) #获取h,w中较小的im_size_max = np.max(img_size[0:2]) #获取h,w中较大的# 保持宽高比不变,且短边不大于600,长边不大于1200im_scale = float(600) / float(im_size_min)if np.round(im_scale * im_size_max) > 1200:im_scale = float(1200) / float(im_size_max)new_h = int(img_size[0] * im_scale)new_w = int(img_size[1] * im_scale)# 使得图像的w,h都是16的整数倍new_h = new_h if new_h // 16 == 0 else (new_h // 16 + 1) * 16new_w = new_w if new_w // 16 == 0 else (new_w // 16 + 1) * 16re_im = cv.resize(img, (new_w, new_h), interpolation=cv.INTER_LINEAR)re_size = re_im.shapepolys = []with open(gt_path, 'r') as f:lines = f.readlines()for line in lines:splitted_line = line.strip().lower().split(',')x1, y1, x2, y2, x3, y3, x4, y4 = map(float, splitted_line[:8])poly = np.array([x1, y1, x2, y2, x3, y3, x4, y4]).reshape([4, 2])poly[:, 0] = poly[:, 0] / img_size[1] * re_size[1]poly[:, 1] = poly[:, 1] / img_size[0] * re_size[0]poly = orderConvex(poly)polys.append(poly)# 可视化# cv.polylines(re_im, [poly.astype(np.int32).reshape((-1, 1, 2))], True,color=(0, 255, 0), thickness=2)res_polys = []for poly in polys:# delete polys with width less than 10 pixelif np.linalg.norm(poly[0] - poly[1]) < 10 or np.linalg.norm(poly[3] - poly[0]) < 10:continueres = shrink_poly(poly)# # 切分后的矩形框可视化# for p in res:#    cv.polylines(re_im, [p.astype(np.int32).reshape((-1, 1, 2))], True, color=(0, 255, 0), thickness=1)res = res.reshape([-1, 4, 2])for r in res:x_min = np.min(r[:, 0])y_min = np.min(r[:, 1])x_max = np.max(r[:, 0])y_max = np.max(r[:, 1])res_polys.append([x_min, y_min, x_max, y_max])# # 可视化# cv.imshow("demo",re_im)# cv.waitKey(0)if(len(res_polys)>0):  #不为空的情况下再保存cv.imwrite(os.path.join(OUTPUT, "image", fn), re_im)with open(os.path.join(OUTPUT, "label", bfn) + ".txt", "w") as f:for p in res_polys:line = ",".join(str(p[i]) for i in range(4))f.writelines(line + "\r\n")# #可视化# for p in res_polys:#    cv.rectangle(re_im,(p[0],p[1]),(p[2],p[3]),color=(0,0,255),thickness=1)# cv.imshow("demo",re_im)# cv.waitKey(0)except:print("Error processing {}".format(im_fn))

多说一句,94行的判断语句是我加上的,因为我的数据集在转化过程中,会出现保存的txt为空的情况,训练时会出错,所以加了一个判断。

if(len(res_polys)>0):  #不为空的情况下再保存

最终整理好的数据集:

 

这篇关于CTPN源码解析1-数据预处理split_label.py的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770514

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.