DeepSpeed-Chat RLHF 阶段代码解读(0) —— 原始 PPO 代码解读

2024-03-03 12:44

本文主要是介绍DeepSpeed-Chat RLHF 阶段代码解读(0) —— 原始 PPO 代码解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了理解 DeepSpeed-Chat RLHF 的 RLHF 全部过程,这个系列会分三篇文章分别介绍:
原始 PPO 代码解读RLHF 奖励函数代码解读RLHF PPO 代码解读
这是系列的第一篇文章,我们来一步一步的看 PPO 算法的代码实现,对于 PPO 算法原理不太了解的同学,可以参考之前的文章:
深度强化学习(DRL)算法 2 —— PPO 之 Clipped Surrogate Objective 篇
深度强化学习(DRL)算法 2 —— PPO 之 GAE 篇

Clipped Surrogate 函数实现

# code from cleanrl: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py
for start in range(0, args.batch_size, args.minibatch_size):end = start + args.minibatch_sizemb_inds = b_inds[start:end]_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds])logratio = newlogprob - b_logprobs[mb_inds]ratio = logratio.exp()mb_advantages = b_advantages[mb_inds]if args.norm_adv:mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)# Policy losspg_loss1 = -mb_advantages * ratiopg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)pg_loss = torch.max(pg_loss1, pg_loss2).mean()

Clipped Surrogate 函数的实现很简单,这里不再赘述,理解算法原理,代码自然而然就可以看懂,核心是 get_action_and_value 函数的理解。

def get_action_and_value(self, x, action=None):logits = self.actor(x)# probs 相当于计算 softmaxprobs = Categorical(logits=logits)if action is None:action = probs.sample()# probs.log_prob(action) 计算的是 p(a|s) 的 log 形式,方便计算 Clipped Surrogate 函数里的 ratioreturn action, probs.log_prob(action), probs.entropy(), self.critic(x) 

GAE 实现

直接来看 gae 可能比较抽象,我们先来看蒙特卡洛方法实现的优势估计,对蒙特卡洛方法不熟悉的同学,可以参考之前的文章。
深度强化学习(DRL)算法 附录 3 —— 蒙特卡洛方法(MC)和时序差分(TD)
两种方法都采用了反向迭代(因为反向迭代更好计算)的方式来实现优势估计。

# code from cleanrl: https://github.com/vwxyzjn/cleanrl/commit/b7088a41e5e6f0f5f6940fd29054a35118083b28
last_value = agent.get_value(next_obs.to(device)).reshape(1, -1)returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):if t == args.num_steps - 1:nextnonterminal = 1.0 - next_donenext_return = last_valueelse:nextnonterminal = 1.0 - dones[t+1]next_return = returns[t+1]returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values

上面的代码做了什么事情呢,last_value 对应最后的 step(对应 step t) 产生的期望回报,如果 step t-1 整个流程没有结束,那么 t-1 时刻的期望回报就是 reward(t-1) + args.gamma * nextnonterminal * next_return,这样一步一步往后推,就可以计算每一个 step 的期望回报,从而得到每一步的优势,还没理解的话,看下面每个时间步的拆解。关于 last_value 的使用,这里由于没有后续的回报可以累积,所以直接使用 last_value 作为最后一个时间步的回报。关于下面为啥用 return[t-1] 替换原始公式的 value[t-1],这样计算的话就相当于蒙特卡洛方法的优势估计,如果next_return = returns[t+1] 改成 next_value = values[t+1] 就相当于 TD(1) 的优势估计。

# t
return(t) = v(t)
# t - 1
return(t-1) = reward(t-1) + gamma * return(t) = reward(t-1) + gamma * return(t)
# t - 2
return(t-2) = reward(t-2) + gamma * return(t-1) = reward(t-2) + gamma * (reward(t-1) + gamma * return(t))
......
# 我们可以看到一步一步往前推,最后就得到蒙特卡洛方法的优势估计

理解了上面讲的蒙特卡洛方法实现的优势估计,再来看 gae 的实现,我们可以看到代码实现上十分的相似,只是多了 delta 的计算,这里的 delta 对应的就是之前 PPO GAE 篇里介绍的 delta。

# code from cleanrl: https://github.com/vwxyzjn/cleanrl/commit/b7088a41e5e6f0f5f6940fd29054a35118083b28
last_value = agent.get_value(next_obs.to(device)).reshape(1, -1)advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):if t == args.num_steps - 1:nextnonterminal = 1.0 - next_donenextvalues = last_valueelse:nextnonterminal = 1.0 - dones[t+1]nextvalues = values[t+1]delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values

这里通过反向迭代的方式计算 GAE advantage,可能理解上比较抽象,举个例子,就很好理解了:

# advantage(t)
adv[t] = lastgaelam = rewards[t] + gamma * values[t+1] - values[t]
# t-1
adv[t-1] = lastgaelam = rewards[t-1] + gamma * values[t] - values[t-1] + gamma * lambda * lastgaelam
# t-2
adv[t-2] = lastgaelam = rewards[t-2] + gamma * values[t-1] - values[t-2] + gamma * lambda * lastgaelam
...

可以看到,逐项展开,每一时刻的 GAE Advantage 和 PPO GAE 篇里介绍的公式是一模一样的,这里 GAE 就是一种数学公式表达,核心思想是 n step 的优势估计的加权平均,通过数学技巧恰好是上面的形式。

参考

  1. The 37 Implementation Details of Proximal Policy Optimization · The ICLR Blog Track (iclr-blog-track.github.io)
  2. HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION

这篇关于DeepSpeed-Chat RLHF 阶段代码解读(0) —— 原始 PPO 代码解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769650

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时