SparkStreaming在实时处理的两个场景示例

2024-03-03 08:36

本文主要是介绍SparkStreaming在实时处理的两个场景示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Spark Streaming是Apache Spark生态系统中的一个组件,用于实时流式数据处理。它提供了类似于Spark的API,使开发者可以使用相似的编程模型来处理实时数据流。

Spark Streaming的工作原理是将连续的数据流划分成小的批次,并将每个批次作为RDD(弹性分布式数据集)来处理。这样,开发者可以使用Spark的各种高级功能,如map、reduce、join等,来进行实时数据处理。Spark Streaming还提供了内置的窗口操作、状态管理、容错处理等功能,使得开发者能够轻松处理实时数据的复杂逻辑。

Spark Streaming支持多种数据源,包括Kafka、Flume、HDFS、S3等,因此可以轻松地集成到各种数据管道中。它还能够与Spark的批处理和SQL引擎进行无缝集成,从而实现流式处理与批处理的混合使用。
在这里插入图片描述

本文以 TCP、kafka场景讲解spark streaming的使用

消息队列下的信息铺抓

类似消息队列的有redis、kafka等核心组件。
本文以kafka为例,向kafka中实时抓取数据,

pom.xml中添加以下依赖

<dependencies><!-- Spark Core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark Streaming --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark SQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.2.0</version></dependency><!-- Kafka --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Spark Streaming Kafka Connector --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming-kafka-0-10_2.12</artifactId><version>3.2.0</version></dependency><!-- PostgreSQL JDBC --><dependency><groupId>org.postgresql</groupId><artifactId>postgresql</artifactId><version>42.2.24</version></dependency>
</dependencies>

创建项目编写以下代码实现功能

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka").setMaster("local[*]").setExecutorEnv("setLogLevel", "ERROR");//设置日志等级为ERROR,避免日志增长导致的磁盘膨胀// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092");kafkaParams.put("key.deserializer", StringDeserializer.class);kafkaParams.put("value.deserializer", StringDeserializer.class);kafkaParams.put("auto.offset.reset", "earliest");// auto.offset.reset可指定参数有// latest:从分区的最新偏移量开始读取消息。// earliest:从分区的最早偏移量开始读取消息。// none:如果没有有效的偏移量,则抛出异常。kafkaParams.put("enable.auto.commit", true);  //采用自动提交offset 的模式kafkaParams.put("auto.commit.interval.ms",2000);//每隔离两秒提交一次commited-offsetkafkaParams.put("group.id", "spark_kafka"); //消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  //订阅kafka);//定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  //将偏移量和value聚合}), schema);// 写入到 PostgreSQLdf.write()//选择写入数据库的模式.mode(SaveMode.Append)//采用追加的写入模式//协议.format("jdbc")//option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL//确定表名.option("dbtable", "public.spark_kafka")//指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在执行代码前,向创建名为spark_kafka的topic

kafka-topics.sh --create --topic spark_kafka --bootstrap-server 10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

向spark_kafka 主题进行随机推数

kafka-producer-perf-test.sh --topic spark_kafka --thrghput 10 --num-records 10000 --record-size 100000 --producer-props bootstrap.servers=10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

运行过程中消费的offset会一直被提交到每一个分区
在这里插入图片描述

此时在数据库中查看,数据已经实时落地到库中
在这里插入图片描述

TCP

TCP环境下,实时监控日志的输出,可用于监控设备状态、环境变化等。当监测到异常情况时,可以实时发出警报。

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka") // 设置应用程序名称.setMaster("local[*]") // 设置 Spark master 为本地模式,[*]表示使用所有可用核心// 设置日志等级为ERROR,避免日志增长导致的磁盘膨胀.setExecutorEnv("setLogLevel", "ERROR");// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092"); // Kafka 服务器地址kafkaParams.put("key.deserializer", StringDeserializer.class); // key 反序列化器类kafkaParams.put("value.deserializer", StringDeserializer.class); // value 反序列化器类kafkaParams.put("auto.offset.reset", "earliest"); // 从最早的偏移量开始消费消息kafkaParams.put("enable.auto.commit", true);  // 采用自动提交 offset 的模式kafkaParams.put("auto.commit.interval.ms", 2000); // 每隔两秒提交一次 committed-offsetkafkaParams.put("group.id", "spark_kafka"); // 消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  // 订阅 Kafka);// 定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  // 将偏移量和 value 聚合}), schema);// 写入到 PostgreSQLdf.write()// 选择写入数据库的模式.mode(SaveMode.Append) // 采用追加的写入模式// 协议.format("jdbc")// option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL// 确定表名.option("dbtable", "public.spark_kafka") // 指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在10.0.0.108 打开9999端口键入数值 ,使其被spark接收到并进行运算

nc -lk 9999

开启端口可以键入数值 此时会在IDEA的控制台显示其计算值
在这里插入图片描述

这篇关于SparkStreaming在实时处理的两个场景示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769078

相关文章

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

基于 Java 实现的智能客服聊天工具模拟场景

服务端代码 import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.io.PrintWriter;import java.net.ServerSocket;import java.net.Socket;public class Serv

剑指offer(C++)--和为S的两个数字

题目 输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的。 class Solution {public:vector<int> FindNumbersWithSum(vector<int> array,int sum) {vector<int> result;int len = array.size();if(

剑指offer(C++)--两个链表的第一个公共结点

题目 输入两个链表,找出它们的第一个公共结点。 解法一 两个链表一定有交点的话,方法是指向短链表指针先走完,然后指向长链表,指向长链表指针后走完,指向短链表。所以,第二次走过,一定会在交点相遇。 class Solution {public:ListNode* FindFirstCommonNode( ListNode *pHead1, ListNode *pHead2) {ListN

两个基因相关性CPTAC蛋白组数据

目录 蛋白数据下载 ①蛋白数据下载 1,TCGA-选择泛癌数据  2,TCGA-TCPA 3,CPTAC(非TCGA) ②蛋白相关性分析 1,数据整理 2,蛋白相关性分析 PCAS在线分析 蛋白数据下载 CPTAC蛋白组学数据库介绍及数据下载分析 – 王进的个人网站 (jingege.wang) ①蛋白数据下载 可以下载泛癌蛋白数据:UCSC Xena (xena

【SparkStreaming】面试题

Spark Streaming 是 Apache Spark 提供的一个扩展模块,用于处理实时数据流。它使得可以使用 Spark 强大的批处理能力来处理连续的实时数据流。Spark Streaming 提供了高级别的抽象,如 DStream(Discretized Stream),它代表了连续的数据流,并且可以通过应用在其上的高阶操作来进行处理,类似于对静态数据集的操作(如 map、reduce、

53、Flink Interval Join 代码示例

1、概述 interval Join 默认会根据 keyBy 的条件进行 Join 此时为 Inner Join; interval Join 算子的水位线会取两条流中水位线的最小值; interval Join 迟到数据的判定是以 interval Join 算子的水位线为基准; interval Join 可以分别输出两条流中迟到的数据-[sideOutputLeftLateData,

【Unity Shader】Alpha Blend(Alpha混合)的概念及其使用示例

在Unity和图形编程中,Alpha Blend(也称为Alpha混合)是一种用于处理像素透明度的技术。它允许像素与背景像素融合,从而实现透明或半透明的效果。Alpha Blend在渲染具有透明度的物体(如窗户、玻璃、水、雾等)时非常重要。 Alpha Blend的概念: Alpha值:Alpha值是一个介于0(完全透明)和1(完全不透明)的数值,用于表示像素的透明度。混合模式:Alpha B

OSG学习:阴影代码示例

效果图: 代码示例: #include <osgViewer/Viewer>#include <osg/Node>#include <osg/Geode>#include <osg/Group>#include <osg/Camera>#include <osg/ShapeDrawable>#include <osg/ComputeBoundsVisitor>#include

OSG学习:转动的小汽车示例

由于只是简单的示例,所以小汽车的模型也比较简单,是由简单的几何体组成。 代码如下: #include <osg\ShapeDrawable>#include <osg\AnimationPath>#include <osg\MatrixTransform>#include<osgDB\ReadFile>#include<osgViewer\Viewer>osg::MatrixTr