SparkStreaming在实时处理的两个场景示例

2024-03-03 08:36

本文主要是介绍SparkStreaming在实时处理的两个场景示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Spark Streaming是Apache Spark生态系统中的一个组件,用于实时流式数据处理。它提供了类似于Spark的API,使开发者可以使用相似的编程模型来处理实时数据流。

Spark Streaming的工作原理是将连续的数据流划分成小的批次,并将每个批次作为RDD(弹性分布式数据集)来处理。这样,开发者可以使用Spark的各种高级功能,如map、reduce、join等,来进行实时数据处理。Spark Streaming还提供了内置的窗口操作、状态管理、容错处理等功能,使得开发者能够轻松处理实时数据的复杂逻辑。

Spark Streaming支持多种数据源,包括Kafka、Flume、HDFS、S3等,因此可以轻松地集成到各种数据管道中。它还能够与Spark的批处理和SQL引擎进行无缝集成,从而实现流式处理与批处理的混合使用。
在这里插入图片描述

本文以 TCP、kafka场景讲解spark streaming的使用

消息队列下的信息铺抓

类似消息队列的有redis、kafka等核心组件。
本文以kafka为例,向kafka中实时抓取数据,

pom.xml中添加以下依赖

<dependencies><!-- Spark Core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark Streaming --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark SQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.2.0</version></dependency><!-- Kafka --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Spark Streaming Kafka Connector --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming-kafka-0-10_2.12</artifactId><version>3.2.0</version></dependency><!-- PostgreSQL JDBC --><dependency><groupId>org.postgresql</groupId><artifactId>postgresql</artifactId><version>42.2.24</version></dependency>
</dependencies>

创建项目编写以下代码实现功能

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka").setMaster("local[*]").setExecutorEnv("setLogLevel", "ERROR");//设置日志等级为ERROR,避免日志增长导致的磁盘膨胀// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092");kafkaParams.put("key.deserializer", StringDeserializer.class);kafkaParams.put("value.deserializer", StringDeserializer.class);kafkaParams.put("auto.offset.reset", "earliest");// auto.offset.reset可指定参数有// latest:从分区的最新偏移量开始读取消息。// earliest:从分区的最早偏移量开始读取消息。// none:如果没有有效的偏移量,则抛出异常。kafkaParams.put("enable.auto.commit", true);  //采用自动提交offset 的模式kafkaParams.put("auto.commit.interval.ms",2000);//每隔离两秒提交一次commited-offsetkafkaParams.put("group.id", "spark_kafka"); //消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  //订阅kafka);//定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  //将偏移量和value聚合}), schema);// 写入到 PostgreSQLdf.write()//选择写入数据库的模式.mode(SaveMode.Append)//采用追加的写入模式//协议.format("jdbc")//option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL//确定表名.option("dbtable", "public.spark_kafka")//指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在执行代码前,向创建名为spark_kafka的topic

kafka-topics.sh --create --topic spark_kafka --bootstrap-server 10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

向spark_kafka 主题进行随机推数

kafka-producer-perf-test.sh --topic spark_kafka --thrghput 10 --num-records 10000 --record-size 100000 --producer-props bootstrap.servers=10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

运行过程中消费的offset会一直被提交到每一个分区
在这里插入图片描述

此时在数据库中查看,数据已经实时落地到库中
在这里插入图片描述

TCP

TCP环境下,实时监控日志的输出,可用于监控设备状态、环境变化等。当监测到异常情况时,可以实时发出警报。

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka") // 设置应用程序名称.setMaster("local[*]") // 设置 Spark master 为本地模式,[*]表示使用所有可用核心// 设置日志等级为ERROR,避免日志增长导致的磁盘膨胀.setExecutorEnv("setLogLevel", "ERROR");// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092"); // Kafka 服务器地址kafkaParams.put("key.deserializer", StringDeserializer.class); // key 反序列化器类kafkaParams.put("value.deserializer", StringDeserializer.class); // value 反序列化器类kafkaParams.put("auto.offset.reset", "earliest"); // 从最早的偏移量开始消费消息kafkaParams.put("enable.auto.commit", true);  // 采用自动提交 offset 的模式kafkaParams.put("auto.commit.interval.ms", 2000); // 每隔两秒提交一次 committed-offsetkafkaParams.put("group.id", "spark_kafka"); // 消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  // 订阅 Kafka);// 定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  // 将偏移量和 value 聚合}), schema);// 写入到 PostgreSQLdf.write()// 选择写入数据库的模式.mode(SaveMode.Append) // 采用追加的写入模式// 协议.format("jdbc")// option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL// 确定表名.option("dbtable", "public.spark_kafka") // 指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在10.0.0.108 打开9999端口键入数值 ,使其被spark接收到并进行运算

nc -lk 9999

开启端口可以键入数值 此时会在IDEA的控制台显示其计算值
在这里插入图片描述

这篇关于SparkStreaming在实时处理的两个场景示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769078

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python中Markdown库的使用示例详解

《Python中Markdown库的使用示例详解》Markdown库是一个用于处理Markdown文本的Python工具,这篇文章主要为大家详细介绍了Markdown库的具体使用,感兴趣的... 目录一、背景二、什么是 Markdown 库三、如何安装这个库四、库函数使用方法1. markdown.mark

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意