SparkStreaming在实时处理的两个场景示例

2024-03-03 08:36

本文主要是介绍SparkStreaming在实时处理的两个场景示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Spark Streaming是Apache Spark生态系统中的一个组件,用于实时流式数据处理。它提供了类似于Spark的API,使开发者可以使用相似的编程模型来处理实时数据流。

Spark Streaming的工作原理是将连续的数据流划分成小的批次,并将每个批次作为RDD(弹性分布式数据集)来处理。这样,开发者可以使用Spark的各种高级功能,如map、reduce、join等,来进行实时数据处理。Spark Streaming还提供了内置的窗口操作、状态管理、容错处理等功能,使得开发者能够轻松处理实时数据的复杂逻辑。

Spark Streaming支持多种数据源,包括Kafka、Flume、HDFS、S3等,因此可以轻松地集成到各种数据管道中。它还能够与Spark的批处理和SQL引擎进行无缝集成,从而实现流式处理与批处理的混合使用。
在这里插入图片描述

本文以 TCP、kafka场景讲解spark streaming的使用

消息队列下的信息铺抓

类似消息队列的有redis、kafka等核心组件。
本文以kafka为例,向kafka中实时抓取数据,

pom.xml中添加以下依赖

<dependencies><!-- Spark Core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark Streaming --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark SQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.2.0</version></dependency><!-- Kafka --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Spark Streaming Kafka Connector --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming-kafka-0-10_2.12</artifactId><version>3.2.0</version></dependency><!-- PostgreSQL JDBC --><dependency><groupId>org.postgresql</groupId><artifactId>postgresql</artifactId><version>42.2.24</version></dependency>
</dependencies>

创建项目编写以下代码实现功能

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka").setMaster("local[*]").setExecutorEnv("setLogLevel", "ERROR");//设置日志等级为ERROR,避免日志增长导致的磁盘膨胀// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092");kafkaParams.put("key.deserializer", StringDeserializer.class);kafkaParams.put("value.deserializer", StringDeserializer.class);kafkaParams.put("auto.offset.reset", "earliest");// auto.offset.reset可指定参数有// latest:从分区的最新偏移量开始读取消息。// earliest:从分区的最早偏移量开始读取消息。// none:如果没有有效的偏移量,则抛出异常。kafkaParams.put("enable.auto.commit", true);  //采用自动提交offset 的模式kafkaParams.put("auto.commit.interval.ms",2000);//每隔离两秒提交一次commited-offsetkafkaParams.put("group.id", "spark_kafka"); //消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  //订阅kafka);//定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  //将偏移量和value聚合}), schema);// 写入到 PostgreSQLdf.write()//选择写入数据库的模式.mode(SaveMode.Append)//采用追加的写入模式//协议.format("jdbc")//option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL//确定表名.option("dbtable", "public.spark_kafka")//指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在执行代码前,向创建名为spark_kafka的topic

kafka-topics.sh --create --topic spark_kafka --bootstrap-server 10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

向spark_kafka 主题进行随机推数

kafka-producer-perf-test.sh --topic spark_kafka --thrghput 10 --num-records 10000 --record-size 100000 --producer-props bootstrap.servers=10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

运行过程中消费的offset会一直被提交到每一个分区
在这里插入图片描述

此时在数据库中查看,数据已经实时落地到库中
在这里插入图片描述

TCP

TCP环境下,实时监控日志的输出,可用于监控设备状态、环境变化等。当监测到异常情况时,可以实时发出警报。

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka") // 设置应用程序名称.setMaster("local[*]") // 设置 Spark master 为本地模式,[*]表示使用所有可用核心// 设置日志等级为ERROR,避免日志增长导致的磁盘膨胀.setExecutorEnv("setLogLevel", "ERROR");// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092"); // Kafka 服务器地址kafkaParams.put("key.deserializer", StringDeserializer.class); // key 反序列化器类kafkaParams.put("value.deserializer", StringDeserializer.class); // value 反序列化器类kafkaParams.put("auto.offset.reset", "earliest"); // 从最早的偏移量开始消费消息kafkaParams.put("enable.auto.commit", true);  // 采用自动提交 offset 的模式kafkaParams.put("auto.commit.interval.ms", 2000); // 每隔两秒提交一次 committed-offsetkafkaParams.put("group.id", "spark_kafka"); // 消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  // 订阅 Kafka);// 定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  // 将偏移量和 value 聚合}), schema);// 写入到 PostgreSQLdf.write()// 选择写入数据库的模式.mode(SaveMode.Append) // 采用追加的写入模式// 协议.format("jdbc")// option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL// 确定表名.option("dbtable", "public.spark_kafka") // 指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在10.0.0.108 打开9999端口键入数值 ,使其被spark接收到并进行运算

nc -lk 9999

开启端口可以键入数值 此时会在IDEA的控制台显示其计算值
在这里插入图片描述

这篇关于SparkStreaming在实时处理的两个场景示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/769078

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

C#中的 StreamReader/StreamWriter 使用示例详解

《C#中的StreamReader/StreamWriter使用示例详解》在C#开发中,StreamReader和StreamWriter是处理文本文件的核心类,属于System.IO命名空间,本... 目录前言一、什么是 StreamReader 和 StreamWriter?1. 定义2. 特点3. 用