本文主要是介绍LLC谐振变换器变频移相混合控制MATLAB仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
微❤关注“电气仔推送”获得资料(专享优惠)
基本控制原理
为了实现变换器较小的电压增益,同时又有较 高的效率,文中在变频控制的基础上加入移相控制, 在这种控制策略下,变换器通过调节一次侧开关管 的开关频率和移相角来调节输出电压,二次侧开关 管的体二极管作为整流网络,此时变换器工作于“fs > fr”的情况。
fs > fr 时的变频 + 移相控制工作波形如图所示,其前半个周期的工作状态可分为以下六个模态:
[t0 之前]: Q1 和 Q2 处于导通状态,Q3和 Q4 处 于关断状态,Lm1 与 Lr、Cr 谐振,此时谐振电流 iLr与励磁电流 iLm1 相等,且方向为负,电流经过 Q1 和 Q2 形成环流,Q5 ~ Q8 都处于关断状态,由滤波电容 C2 维持二次侧电压 V2。Lm2 两端电压为 0,故 iLm2 可近 似认为不再变化。
[t0 ~ t1]: t0 时刻 Q1 处于导通状态,Q2 ~ Q4 都 处于关断状态,此时 iLm2 与 ir 共同构成的桥臂中点 电流 iAB为一次侧开关管 Q4 的寄生电容 Cq 4 放电, 使其两端电压下降为 0,同时 iAB为 Q2 的寄生电容 Cq 2 充电,使其两端电压上升为 V1。
[t1 ~ t2]: t1 时刻 Q4 零电压开通,Lr 与 Cr 谐振, Lm1 被二次侧电压 nV2 钳位,iLm1 线性上升。Lm2 被 VAB钳位,其电流 iLm2 线性上升。二次侧桥臂中点电 流 iCD经 Q5 和 Q8 的体二极管 Dq5和 Dq8为滤波电容 C2 和二次侧负载提供电流。
[t2 ~ t3]: t2 时刻 Q1 关断,Q4 仍处于导通状态, iAB为 Q3的寄生电容 Cq3放电,使其两端电压下降为 0,同时 iAB为 Q1 的寄生电容 Cq 1 充电,使其两端电 压上升为 V1。谐振电流 iLr在这一阶段不断减小,但 iLr仍大于励磁电流 iLm1,故仍有电流传递到二次侧。 Lm1 被二次侧电压 nV2 钳位,iLm1 线性上升,Lm2 两端 电压为 0,iLm2可近似认为不再变化。
[t3 ~ t4]: t3时刻 Q3零电压开通,此时 VAB为 0, 与上一模态相似,谐振电流 iLr继续减小,iLm1 线性上 升,iLm2可近似认为不再变化。
[t4 ~ t5]: t4 时刻,Q3和 Q4 处于导通状态,Q1 和 Q2 处于关断状态,Lm1 与 Lr、Cr 谐振,此时谐振电流 iLr与励磁电流 iLm1 相等,故 Q5 ~ Q8 都处于关断状 态,由滤波电容 C2 维持二次侧电压 V2。Lm2 因两端 电压为 0,iLm2可近似认为不再变化。
t5 之后 Q4 关断,变换器进入后半段工作周期, 其工作状况与之前情况相似,不再赘述。 若变换器有较大的移相角,会使图 4 中 t4 ~ t6 阶段和 t7 ~ t8 阶段在一个周期中所占的比例加大, 使得变换器的损耗增加,效率降低。
仿真模型
仿真波形
设置输入电压在0.02s时由300V升为400V
参考文献
双向全桥LLC谐振变换器的宽增益混合控制研究_张鸿远
全桥LLC谐振变换器的混合式控制策略_李菊
这篇关于LLC谐振变换器变频移相混合控制MATLAB仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!