实时搜索引擎Elasticsearch(4)——Aggregations (聚合)API的使用

本文主要是介绍实时搜索引擎Elasticsearch(4)——Aggregations (聚合)API的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载:http://blog.csdn.net/xialei199023/article/details/48298635 

实时搜索引擎Elasticsearch(4)——Aggregations (聚合)API的使用


上一篇博客介绍了ES中的简单查询API的使用,本篇将介绍ES提供的聚合API的使用。ES提供的聚合功能可以用来进行简单的数据分析。本文仍然以上一篇提供的数据为例来讲解。数据如下:

studentNonamemaleagebirthdayclassNoaddressisLeader
1刘备241985-02-031湖南省长沙市true
2关羽221987-08-232四川省成都市false
3糜夫人191990-06-121上海市false
4张飞201989-07-303北京市false
5诸葛亮181992-04-272江苏省南京市true
6孙尚香161994-05-213 false
7马超191991-10-201黑龙江省哈尔滨市false
8赵云231986-10-262浙江省杭州市false

本文的主要内容有:

  1. metric API的使用
  2. bucketing API的使用
  3. 两类API的嵌套使用

1. 聚合API

ES中的Aggregations API是从Facets功能基础上发展而来,官网正在进行替换计划,建议用户使用Aggregations API,而不是Facets API。ES中的聚合上可以分为下面两类:

  1. metric(度量)聚合:度量类型聚合主要针对的number类型的数据,需要ES做比较多的计算工作
  2. bucketing(桶)聚合:划分不同的“桶”,将数据分配到不同的“桶”里。非常类似sql中的group语句的含义。

metric既可以作用在整个数据集上,也可以作为bucketing的子聚合作用在每一个“桶”中的数据集上。当然,我们可以把整个数据集合看做一个大“桶”,所有的数据都分配到这个大“桶”中。

ES中的聚合API的调用格式如下:

"aggregations" : {                  // 表示聚合操作,可以使用aggs替代"<aggregation_name>" : {        // 聚合名,可以是任意的字符串。用做响应的key,便于快速取得正确的响应数据。"<aggregation_type>" : {    // 聚合类别,就是各种类型的聚合,如min等<aggregation_body>      // 聚合体,不同的聚合有不同的body}[,"aggregations" : { [<sub_aggregation>]+ } ]? // 嵌套的子聚合,可以有0或多个}[,"<aggregation_name_2>" : { ... } ]* // 另外的聚合,可以有0或多个
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
1.1 度量类型(metric)聚合

(1)Min Aggregation

最小值查询,作用于number类型字段上。查询2班最小的年龄值。

curl -XPOST "192.168.1.101:9200/student/student/_search" -d 
'
{"query": {         // 可以先使用query查询得到需要的数据集"term": {"classNo": "2"}},"aggs": {"min_age": {"min": {"field": "age"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

查询结果为:

{"took": 19,                     // 前面部分数据与普通的查询数据相同"timed_out": false,"_shards": {"total": 5,"successful": 5,"failed": 0},"hits": {"total": 3,"max_score": 1.4054651,"hits": [{"_index": "student","_type": "student","_id": "2","_score": 1.4054651,"_source": {"studentNo": "2","name": "关羽","male": "男","age": "22","birthday": "1987-08-23","classNo": "2","isLeader": "false"}},{"_index": "student","_type": "student","_id": "8","_score": 1,"_source": {"studentNo": "8","name": "赵云","male": "男","age": "23","birthday": "1986-10-26","classNo": "2","isLeader": "false"}},{"_index": "student","_type": "student","_id": "5","_score": 0.30685282,"_source": {"studentNo": "5","name": "诸葛亮","male": "男","age": "18","birthday": "1992-04-27","classNo": "2","isLeader": "true"}}]},"aggregations": {                    // 聚合结果"min_age": {                       // 前面输入的聚合名"value": 18,                     // 聚合后的数据"value_as_string": "18.0"}}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

上面的聚合查询有两个要注意的点:

  1. 可以通过query先过滤数据
  2. 返回的结果会包含聚合操作所作用的数据全集

有时候我们对作用的数据全集并不太敢兴趣,我们仅仅需要最终的聚合结果。可以通过查询类型(search_type)参数来实现这个需求。下面查询出来的数据量会大大减少,ES内部也会在查询时减少一些耗时的步骤,所以查询效率会提高。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d     // 注意这里的search_type=count
'
{"query": {             // 可以先使用query查询得到需要的数据集"term": {"classNo": "2"}},"aggs": {"min_age": {"min": {"field": "age"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

本次的查询结果为:

{
..."aggregations": {                    // 聚合结果"min_age": {                       // 前面输入的聚合名"value": 18,                     // 聚合后的数据"value_as_string": "18.0"}}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

(2)Max Aggregation

最大值查询。下面查询2班最大的年龄值,查询结果为23。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"query": {"term": {"classNo": "2"}},"aggs": {"max_age": {"max": {"field": "age"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

(3)Sum Aggregation

数值求和。下面统计查询2班的年龄总和,查询结果为63。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"query": {"term": {"classNo": "2"}},"aggs": {"sum_age": {"sum": {"field": "age"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

(4)Avg Aggregation

计算平均值。下面计算查询2班的年龄平均值,结果为21。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"query": {"term": {"classNo": "2"}},"aggs": {"avg_age": {"avg": {"field": "age"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

(5)Stats Aggregation

统计查询,一次性统计出某个字段上的常用统计值。下面对整个学校的学生进行简单地统计。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"stats_age": {"stats": {"field": "age"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

查询结果为:

{...                     // 次要数据省略"aggregations": {"stats_age": {"count": 8,        // 含有年龄数据的学生计数"min": 16,         // 年龄最小值"max": 24,         // 年龄最大值"avg": 20.125,     // 年龄平均值"sum": 161,        // 年龄总和"min_as_string": "16.0","max_as_string": "24.0","avg_as_string": "20.125","sum_as_string": "161.0"}}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

(6)Top hits Aggregation

取符合条件的前n条数据记录。下面查询全校年龄排在前2位的学生,仅需返回学生姓名和年龄。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
{"aggs": {"top_age": {"top_hits": {"sort": [               // 排序{"age": {            // 按年龄降序"order": "desc"}}],"_source": {"include": [           // 指定返回字段"name","age"]},"size": 2                 // 取前2条数据}}}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

返回结果为:

{..."aggregations": {"top_age": {"hits": {"total": 9,"max_score": null,"hits": [{"_index": "student","_type": "student","_id": "1","_score": null,"_source": {"name": "刘备","age": "24"},"sort": [24]},{"_index": "student","_type": "student","_id": "8","_score": null,"_source": {"name": "赵云","age": "23"},"sort": [23]}]}}}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
1.2 桶类型(bucketing)聚合

(1)Terms Aggregation

按照指定的1或多个字段将数据划分成若干个小的区间,计算落在每一个区间上记录数量,并按指定顺序进行排序。下面统计每个班的学生数,并按学生数从大到小排序,取学生数靠前的2个班级。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"terms_classNo": {"terms": {"field": "classNo",            // 按照班号进行分组"order": {                     // 按学生数从大到小排序"_count": "desc"},"size": 2                      // 取前两名}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

值得注意的,取得的前2名的学生数实际上是一个近似值,ES的实现方式参见这里。如果想要取得精确值,可以不指定size值,使其进行一次全排序,然后在程序中自行去取前2条记录。当然,这样做会使得ES做大量的排序运算工作,效率比较差。

(2)Range Aggregation

自定义区间范围的聚合,我们可以自己手动地划分区间,ES会根据划分出来的区间将数据分配不同的区间上去。下面将全校学生按照年龄划分为5个区间段:16岁以下、16~18、19~21、22~24、24岁以上,要求统计每一个年龄段内的学生数。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"range_age": {"range": {"field": "age","ranges": [{"to": 15},{"from": "16","to": "18"},{"from": "19","to": "21"},{"from": "22","to": "24"},{"from": "25"}]}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

(3)Date Range Aggregation

时间区间聚合专门针对date类型的字段,它与Range Aggregation的主要区别是其可以使用时间运算表达式。主要包括+(加法)运算、-(减法)运算和/(四舍五入)运算,每种运算都可以作用在不同的时间域上面,下面是一些时间运算表达式示例。

  • now+10y:表示从现在开始的第10年。
  • now+10M:表示从现在开始的第10个月。
  • 1990-01-10||+20y:表示从1990-01-01开始后的第20年,即2010-01-01。
  • now/y:表示在年位上做舍入运算。今天是2015-09-06,则这个表达式计算结果为:2015-01-01。说好的rounding运算呢?结果是做的flooring运算,不知道为啥,估计是我理解错了-_-!!

下面查询25年前及更早出生的学生数。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"range_age": {"date_range": {"field": "birthday","ranges": [{"to": "now-25y"}]}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

(4)Histogram Aggregation

直方图聚合,它将某个number类型字段等分成n份,统计落在每一个区间内的记录数。它与前面介绍的Range聚合非常像,只不过Range可以任意划分区间,而Histogram做等间距划分。既然是等间距划分,那么参数里面必然有距离参数,就是interval参数。下面按学生年龄统计各个年龄段内的学生数量,分隔距离为2岁。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"histogram_age": {"histogram": {"field": "age","interval": 2,               // 距离为2"min_doc_count": 1           // 只返回记录数量大于等于1的区间}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

(5)Date Histogram Aggregation

时间直方图聚合,专门对时间类型的字段做直方图聚合。这种需求是比较常用见得的,我们在统计时,通常就会按照固定的时间断(1个月或1年等)来做统计。下面统计学校中同一年出生的学生数。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"data_histogram_birthday": {"date_histogram": {"field": "birthday","interval": "year",              // 按年统计"format": "yyyy"                 // 返回结果的key的格式}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

返回结果如下,可以看到由于上面的”format”: “yyyy”,所以返回的key_as_string只返回年的信息。

{"buckets": [{"key_as_string": "1985","key": 473385600000,"doc_count": 1},{"key_as_string": "1986","key": 504921600000,"doc_count": 1},{"key_as_string": "1987","key": 536457600000,"doc_count": 1},{"key_as_string": "1989","key": 599616000000,"doc_count": 1},{"key_as_string": "1990","key": 631152000000,"doc_count": 1},{"key_as_string": "1991","key": 662688000000,"doc_count": 1},{"key_as_string": "1992","key": 694224000000,"doc_count": 1},{"key_as_string": "1994","key": 757382400000,"doc_count": 1}]
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

(6)Missing Aggregation

值缺损聚合,它是一类单桶聚合,也就是最终只会产生一个“桶”。下面统计学生信息中地址栏缺损的记录数量。由于只有学号为6的孙尚香的地址缺损,所以统计值为1。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d 
'
{"aggs": {"missing_address": {"missing": {"field": "address"}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
1.3 嵌套使用

前面已经说过,聚合操作是可以嵌套使用的。通过嵌套,可以使得metric类型的聚合操作作用在每一“桶”上。我们可以使用ES的嵌套聚合操作来完成稍微复杂一点的统计功能。下面统计每一个班里最大的年龄值。

curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{"aggs": {"missing_address": {"terms": {"field": "classNo"},"aggs": {                 // 在这里嵌套新的子聚合"max_age": {"max": {              // 使用max聚合"field": "age"}}}}}
}
'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

返回结果如下:

{"buckets": [{"key": "1",               // key是班级号"doc_count": 3,           // 每个班级内的人数"max_age": {              // 这里是我们指定的子聚合名"value": 24,            // 每班的年龄值"value_as_string": "24.0"}},{"key": "2","doc_count": 3,"max_age": {"value": 23,"value_as_string": "23.0"}},{"key": "3","doc_count": 1,"max_age": {"value": 20,"value_as_string": "20.0"}},{"key": "4","doc_count": 1,"max_age": {"value": 16,"value_as_string": "16.0"}}]
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

2. 总结

本文介绍了ES中的一些常用的聚合API的使用,包括metric、bucketing以及它们的嵌套使用方法。掌握了这些API就可以完成简单的数据统计功能,更多的API详见官方文档。前面的博客中都是介绍了ES的Rest API,接下来的文章中将会介绍Java API的使用,使用Java API可以实现前面介绍的所有API的功能。


这篇关于实时搜索引擎Elasticsearch(4)——Aggregations (聚合)API的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768310

相关文章

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QUndoView控件的具体使用

《Qt中QUndoView控件的具体使用》QUndoView是Qt框架中用于可视化显示QUndoStack内容的控件,本文主要介绍了Qt中QUndoView控件的具体使用,具有一定的参考价值,感兴趣的... 目录引言一、QUndoView 的用途二、工作原理三、 如何与 QUnDOStack 配合使用四、自

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3