YOLOv9有效提点|加入SGE、Ge、Global Context、GAM等几十种注意力机制(四)

2024-03-03 02:04

本文主要是介绍YOLOv9有效提点|加入SGE、Ge、Global Context、GAM等几十种注意力机制(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、本文介绍

 本文只有代码及注意力模块简介,YOLOv9中的添加教程:可以看这篇文章。

YOLOv9有效提点|加入SE、CBAM、ECA、SimAM等几十种注意力机制(一)


SGE:《Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks

        SGE是一种轻量级的神经网络模块,它可以调整卷积神经网络中每个子特征的重要性,从而提高图像识别任务的性能。SGE通过生成注意力因子来调整每个子特征的强度,有效抑制噪声。与流行的CNN主干网络集成时,SGE可以显著提高图像识别性能。。

import numpy as np
import torch
from torch import nn
from torch.nn import initclass SpatialGroupEnhance(nn.Module):def __init__(self, groups=8):super().__init__()self.groups=groupsself.avg_pool = nn.AdaptiveAvgPool2d(1)self.weight=nn.Parameter(torch.zeros(1,groups,1,1))self.bias=nn.Parameter(torch.zeros(1,groups,1,1))self.sig=nn.Sigmoid()self.init_weights()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, h,w=x.shapex=x.view(b*self.groups,-1,h,w) #bs*g,dim//g,h,wxn=x*self.avg_pool(x) #bs*g,dim//g,h,wxn=xn.sum(dim=1,keepdim=True) #bs*g,1,h,wt=xn.view(b*self.groups,-1) #bs*g,h*wt=t-t.mean(dim=1,keepdim=True) #bs*g,h*wstd=t.std(dim=1,keepdim=True)+1e-5t=t/std #bs*g,h*wt=t.view(b,self.groups,h,w) #bs,g,h*wt=t*self.weight+self.bias #bs,g,h*wt=t.view(b*self.groups,1,h,w) #bs*g,1,h*wx=x*self.sig(t)x=x.view(b,c,h,w)return x 

Ge《Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks》

        Ge通过引入两个操作符“收集”和“激发”,来改善卷积神经网络(CNN)对上下文的利用。这两个操作符可以有效地从大范围空间中聚合响应,并将信息重新分配给本地特征。这个方法简单且轻量级,可以轻松集成到现有的CNN架构中,而且只增加了很少的参数和计算复杂性。此外,作者还提出了一种参数化的收集-激发操作符对,进一步提高了性能,并将其与最近引入的挤压和激励网络进行了关联。。

 这个暂时没调试,代码地址:https://github.com/hujie-frank/GENet


《Global Context Networks》

        全局上下文建模注意力机制。论文发现非局部网络对全局上下文的建模对于不同查询位置是相同的。因此,作者创建了一个更简单的网络,只考虑查询无关的全局上下文,减少了计算量。作者还将非局部块的一个转换函数替换为两个瓶颈函数,进一步减少了参数数量。这个新网络叫做全局上下文网络(GCNet),它在各种识别任务的主要基准上表现得比非局部网络更好。。

暂没调试,代码地址:https://github.com/xvjiarui/GCNet


Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

         保留信息以增强通道-空间交互注意力机制-GAM是一种全局注意力机制,通过减少信息损失和增强全局交互表示来提高深度神经网络的性能。作者引入了3D排列和多层感知器来进行通道注意力,同时引入卷积空间注意力子模块。在CIFAR-100和ImageNet-1K图像分类任务上的评估表明,该方法优于几种最近的注意力机制,包括ResNet和轻量级的MobileNet。。

import torch.nn as nn
import torchclass GAM_Attention(nn.Module):def __init__(self, in_channels, rate=4):super(GAM_Attention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(in_channels, int(in_channels / rate)),nn.ReLU(inplace=True),nn.Linear(int(in_channels / rate), in_channels))self.spatial_attention = nn.Sequential(nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),nn.BatchNorm2d(int(in_channels / rate)),nn.ReLU(inplace=True),nn.Conv2d(int(in_channels / rate), in_channels, kernel_size=7, padding=3),nn.BatchNorm2d(in_channels))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2).sigmoid()x = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()out = x * x_spatial_attreturn out

这篇关于YOLOv9有效提点|加入SGE、Ge、Global Context、GAM等几十种注意力机制(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768114

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中