【CTR预估】Deep Cross Network 模型

2024-03-03 01:38

本文主要是介绍【CTR预估】Deep Cross Network 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DCN模型是组合了显式和隐式特征交叉的一个模型。如果了解WD模型的话,简单的说这篇文章就是把WD模型的wide侧改成了cross网络,用来显式的做一些特征的交叉,因为DNN虽然有着拟合任意模型的能力,但是世界上没有免费的午餐,所以显式的定义特征交叉还是很有必要的。

论文下载地址:https://arxiv.org/pdf/1708.05123.pdf

这里我对一些常用的ctr预估模型进行了复现,其中也包括了DCN模型,可以参考一些:https://github.com/Shicoder/Deep_Rec/blob/master/Deep_Rank

1.模型结构

结构图如下所示:

                                  

2.模型输入

我们从下到上,先看模型的输入,如下所示

                                     

这个也是推荐领域常见的输入方式,将实值类的特征stack起来,稀疏的类别特征做embedding。然后整体concat起来作为模型的输入。

3.模型核心结构

再往上走一步

                             

先看右边的模型,就是一个正常的全连接网络。

关键的是左边的cross 网络

如果直接看图上的公式会有点误导,直接看文章给出的每一层x的计算公式和具体的可视化图

            公式:

                                  

            交叉层可视化图:

                                     

这样就比较清楚了,每一层的计算中都有x_0,x_0是一个列向量,所以x_0*x{}'这个计算过程相当于把交叉网络输入x_0的每个维度分发到不同的维度上,再利用w把分发出去的值合并起来,以此来达到交叉特征的效果。

举个栗子?

假设输入的是一个三维的向量x_0=[x_{01},x_{02},x_{03}],那么第一层交叉层的计算如下图:

                               

看一下过程就很清楚了。

 而每一层中的参数只有w_lb_l ,如果输入数据的维度是d,交叉层的层数是L,那么整个交叉网络的参数只有d*L*2,也大大减少了参数的数量。

4.最后的输出

                                

交叉网络和深度网络的输出是他们最后一层神经网络节点值。这里和wide and deep 模型不同的是,wide and deep模型最后的输出只有一个节点,模型直接将wide和deep两个子模型的输出的单个值加起来送入激活函数。

而这里是将cross网络输出的向量和deep输出的向量concate起来,再做一层的全连接,才送入激活函数。

具体实现代码github上很多。

这篇关于【CTR预估】Deep Cross Network 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768059

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者