中医药NER命名实体识别基于SPANNER方式

2024-03-03 01:10

本文主要是介绍中医药NER命名实体识别基于SPANNER方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

a736025ce177403415eba7aa097a8a10.gif

向AI转型的程序员都关注了这个号👇👇👇

知识图谱是近年来知识管理和知识服务领域中出现的一项新兴技术,它为中医临床知识的关联、整合与分析提供了理想的技术手段。我们基于中医医案等临床知识源,初步建立了由疾病、证候、症状、方剂、中药等核心概念所构成的中医临床知识图谱,以促进中医临床知识的互融互通,揭示中医方证的相关关系,辅助中医临床研究和临床决策。

中医药学是一门古老的医学,历代医家在数千年的实践中积累了丰富的临床经验,形成了完整的知识体系,产生了海量的临床文献。近年来,国家对中医药事业大力扶持,中医药领域的临床实践和临床研究都取得了长足的发展。中医临床方法在国际社会得到广泛认可,传播到183个国家和地区。

利用信息技术手段开展中医临床知识的管理和服务是一项开创性的探索,在临床上具有极大的应用价值。近年来,知识图谱(Knowledge Graph)成为知识管理领域中的一项新兴技术,因其简单易学、可扩展性强、支持智能应用等优点而得到广泛应用。它有助于实现临床指南、中医医案以及方剂知识等各类知识的关联与整合,挖掘整理中医临证经验与学术思想,实现智能化、个性化的中医药知识服务,因此在中医临床领域具有广阔的应用前景。

任务目的是从中医药期刊文献的题目和摘要中识别中医药相关实体,实体类型具体包括:中医诊断、西医诊断、中医证候、临床表现、中医治则、方剂、中药、其他治疗等

提供的训练数据为BIO格式,如:

  • 现 O

  • 头 O

  • 昏 O

  • 口 B-临床表现

  • 苦 I-临床表现

  1. 训练集、验证集和测试集同分布,长度范围为[0,150],数据平均长度约37

  2. 各标签数量分布非常不均匀,出现最多的的实体是临床表现、西医诊断、中药, 中医诊断、中医治则、其他治疗实体较少,可以考虑补充有相关实体的数据集

代码地址:

关注微信公众号 datayx  然后回复 中医药  即可获取。

模型架构部分

三层架构,底层句子表示层,采用ernie-health-chinese百度开源医疗预训练语言模型进行句子向量表示;第二层LSTM层,将第一层输出作为Bi-LSTM层输入让模型学习前后依赖信息;第三层SPAN预测,将第二层LSTM输出(只取序列输出)放到全连接层1预测实体头,输出shape为[batch_size , seq_len , num_labels],然后实体头预测结果和第二层LSTM输出(只取序列输出,输入shape[batch_size , seq_len , hidden_size * 2+1])放到全连接层2预测实体尾。

c0cc1e2b37110a349c1f8cb360b7b59e.png

模型训练优化部分

根据数据探索性分析,损失函数采用多分类的focal loss(label smooth好像也行但没有实现),降低模型对预测实体标签类别有不同倾向,减少标签分类数量不平衡的影响,提高模型泛化性;fgm/pgd强化训练,训练更平稳,减少模型过拟合情况。优化器采用adamW。

Focal loss是最初由何恺明提出的,最初用于图像领域解决数据不平衡造成的模型性能问题。

 18130bb1b9fd326101888648712a9800.png

这里推荐个博客有关于focal loss二分类和多分类的介绍和实现https://blog.csdn.net/u014311125/article/details/109470137

不同方案测试集F1值比较(部分)

方案(不包括对抗训练和数据集修正)测试集F1值
BERT+LSTM+CRF(baseline)0.73919
Ernie-health-ch+Bi-LSTM+CRF(BIO)0.78621
Ernie-health-ch+MLP(SPAN)0.80161
Nezha-wwm-large-chinese+Bi-LSTM+SPAN_predict(focal loss)0.80034
Ernie-health-ch+Bi-LSTM+SPAN_predict(focal loss)0.81412

对抗训练FMG/PGD提升1个点左右,数据集修正(补充漏标为主)提升3-4个点

机器学习算法AI大数据技术搜索公众号添加: datanlp长按图片,识别二维码
阅读过本文的人还看了以下文章:
TensorFlow 2.0深度学习案例实战
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《基于深度学习的自然语言处理》中/英PDF
Deep Learning 中文版初版-周志华团队
【全套视频课】最全的目标检测算法系列讲解,通俗易懂!
《美团机器学习实践》_美团算法团队.pdf
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
《深度学习:基于Keras的Python实践》PDF和代码
特征提取与图像处理(第二版).pdf
python就业班学习视频,从入门到实战项目
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
《深度学习之pytorch》pdf+附书源码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
《Python数据分析与挖掘实战》PDF+完整源码
汽车行业完整知识图谱项目实战视频(全23课)
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码
将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享
重要开源!CNN-RNN-CTC 实现手写汉字识别
yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?
前海征信大数据算法:风险概率预测
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)
特征工程(二) :文本数据的展开、过滤和分块
特征工程(三):特征缩放,从词袋到 TF-IDF
特征工程(四): 类别特征
特征工程(五): PCA 降维
特征工程(六): 非线性特征提取和模型堆叠
特征工程(七):图像特征提取和深度学习
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过
全球AI挑战-场景分类的比赛源码(多模型融合)
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python搜索公众号添加: datayx

这篇关于中医药NER命名实体识别基于SPANNER方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767992

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Android里面的Service种类以及启动方式

《Android里面的Service种类以及启动方式》Android中的Service分为前台服务和后台服务,前台服务需要亮身份牌并显示通知,后台服务则有启动方式选择,包括startService和b... 目录一句话总结:一、Service 的两种类型:1. 前台服务(必须亮身份牌)2. 后台服务(偷偷干

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点:

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

CSS弹性布局常用设置方式

《CSS弹性布局常用设置方式》文章总结了CSS布局与样式的常用属性和技巧,包括视口单位、弹性盒子布局、浮动元素、背景和边框样式、文本和阴影效果、溢出隐藏、定位以及背景渐变等,通过这些技巧,可以实现复杂... 一、单位元素vm 1vm 为视口的1%vh 视口高的1%vmin 参照长边vmax 参照长边re

JavaWeb-WebSocket浏览器服务器双向通信方式

《JavaWeb-WebSocket浏览器服务器双向通信方式》文章介绍了WebSocket协议的工作原理和应用场景,包括与HTTP的对比,接着,详细介绍了如何在Java中使用WebSocket,包括配... 目录一、概述二、入门2.1 POM依赖2.2 编写配置类2.3 编写WebSocket服务2.4 浏