在Python里,用股票案例讲描述性统计分析方法(内容来自我的书)

2024-03-03 00:32

本文主要是介绍在Python里,用股票案例讲描述性统计分析方法(内容来自我的书),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    描述性统计是数学统计分析里的一种方法,通过这种统计方法,能分析出数据整体状况以及数据间的关联。在这部分里,将用股票数据为样本,以matplotlib类为可视化工具,讲述描述性统计里常用指标的计算方法和含义。

1 平均数、中位数和百分位数

    平均数比较好理解,是样本的和除以样本的个数。

    中位数也叫中值,假设样本个数是奇数,那么数据按顺序排列后处于居中位置的数则是中位数,如果样本个数是偶数,那么排序后,中间两个数据的均值则是中位数。通俗地讲,在样本数据里,有一半的样本比中位数大,有一半比它小。

    把中位数的概念扩展一下,即可得到百分位数。比如第25百分位数则表示,样本数据里,有25%的数据小于等于它,而75%的数据大于它。在实际项目里,还会把第25百分位数、中位数和第75百分位数组合起来形成四分位数,因为通过这些数,能把样本一分为四。其中第25百分位数也叫下四分位数,第75百分位数也叫上四分位数。

    理解概念后,在如下的CalAvgMore.py范例中,将以股票收盘价为例,演示平均数、中位数和四分位数的求法。    

1	#coding=utf-8
2	import pandas as pd
3	filename='D:\\work\\data\\ch9\\6007852019-06-012020-01-31.csv'
4	df = pd.read_csv(filename,encoding='gbk') #读取数据到DataFrame
5	print(df['Close'].mean()) #输出收盘价的平均值
6	print(df['Close'].median()) #输出收盘价的中位数
7	print(df['Close'].quantile(0.5)) #输出收盘价第50百分位数
8	print(df['Close'].quantile(0.25)) #输出收盘价第25百分位数
9	print(df['Close'].quantile(0.75)) #输出收盘价第75百分位数

    在进行数据分析时,一般会先从csv文件等数据源里获取样本,获取后用表格类型的DataFrame对象来存储,所以在第3行和第4行里,演示从指定csv文件里得到数据并通过read_csv导入到DataFrame类型对象的做法,这里用到csv是由9.1.4部分的StoreStockToMySQL范例生成的。

     Pandas库的DataFrame对象已经封装了求各种统计数据的方法,具体而言,能通过第5行的mean方法求平均值,在调用时,还可以用诸如df['Close']的样式,指定针对哪列数据计算。通过第6行的median方法,能计算指定列的中位数。

    在第7行到第9行的代码里,是通过 quantile方法求百分位数,比如第7行的参数是0.5,则求第50的百分位数。运行本范例,能看到如下的输出结果,其中第2行输出的中位数和第3行输出的第50百分位数是一个结果。

2 用箱状图展示分位数

    箱状图能以可视化的方式,形象地展示平均数和诸多分位数。在如下的BoxPlotDemo.py范例中,将还是以股票收盘价为例,展示箱状图的绘制技巧,从中大家能进一步了解分位数的概念。   

1	#coding=utf-8
2	import pandas as pd
3	import matplotlib.pyplot as plt
4	filename='D:\\work\\data\\ch9\\6007852019-06-012020-01-31.csv'
5	df = pd.read_csv(filename,encoding='gbk') #读取数据到DataFrame
6	#绘制箱状图
7	df['Close'].plot.box(patch_artist=True,notch = True)  
8	plt.show()

    在代码的第5行里,还是通过read_csv方法把csv文件数据读到df对象,之后,是通过第7行的plot.box方法,绘制“收盘价”的箱状图,运行本范例后,能看到如下图所示的效果。

    在第7行绘制箱状图时传入了两个参数,其中patch_artist=True表示需要填充箱体的颜色,用notch = True表示以凹口的方式展示箱状图。从上述箱状图里,能形象地看到最高和最低的值,以及第25、第50和第75百分位数的值,由此更能形象地看到“收盘价”样本数的聚集区间。

3 统计极差、方差和标准差

    在统计学里,一般用这三个指标来衡量样本数据的离散度,即衡量样本数对于中心位置(一般是平均数)的偏离程度。

    其中,极差的算法比较简单,是样本里最大值和最小值的差,而方差是每个样本值与全体样本值的平均数之差的平方值的平均数,标准差则是方差的平方根。在如下的CalAlias.py范例中,将演示这三个值的获取方式。    

1	#coding=utf-8
2	import pandas as pd
3	filename='D:\\work\\data\\ch9\\6007852019-06-012020-01-31.csv'
4	df = pd.read_csv(filename,encoding='gbk') #读取数据到DataFrame
5	print(df['Close'].max() - df['Close'].min()) #求极差
6	print(df['Close'].var()) #求方差
7	print(df['Close'].std()) #求标准差

    在第5行里,是通过最大值减最小值的方法算出了极差,在第6行里,通过var方法计算了方差,第7行则通过std方法求标准差。

 本文出自我写的书: Python爬虫、数据分析与可视化:工具详解与案例实战,https://item.jd.com/10023983398756.html

    

    

请大家关注我的公众号:一起进步,一起挣钱,在本公众号里,会有很多精彩文章。

这篇关于在Python里,用股票案例讲描述性统计分析方法(内容来自我的书)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767893

相关文章

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式