大模型面试面经:简单透彻理解MoE

2024-03-02 12:52

本文主要是介绍大模型面试面经:简单透彻理解MoE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLM 时代流传着一个法则:Scaling Law,即通过某种维度的指数上升可以带来指标的线性提升。

如下图所示,在 Compute、Data、Parameter 三个维度上的指数上升可以带来在 test loss 上的线性下降。

图片

MoE(Mixture of Experts,混合专家模型)从本质上来说就是一种高效的 scaling 技术,用较少的 compute 实现更大的模型规模,从而获得更好的性能。

据说目前 LLM 的天花板 GPT-4 也使用了 MoE 技术,Mistral 7B /w 8 experts 的 checkpoint 释出,彻底引爆了 AI 社区对 MoE 的热情。

模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。

MoE 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的规模。特别是在预训练阶段,与稠密模型相比,混合专家模型通常能够更快地达到相同的质量水平。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:1.6万字全面掌握 BERT
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:图解 Transformer 架构
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。
  • 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。
  • 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。
  • 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统
  • 用通俗易懂的方式讲解:面试字节大模型算法岗(实习)
  • 用通俗易懂的方式讲解:大模型算法岗(含实习)最走心的总结
  • 用通俗易懂的方式讲解:大模型微调方法汇总

MoE结构和原理

作为一种基于 Transformer 架构的模型,MoE 主要由两个关键部分组成:

  • 稀疏 MoE 层: 这些层代替了传统 Transformer 模型中的前馈网络 (FFN) 层。MoE 层包含若干“专家”(例如 8 个),每个专家本身是一个独立的神经网络。在实际应用中,这些专家通常是前馈网络 (FFN),但它们也可以是更复杂的网络结构,甚至可以是 MoE 层本身,从而形成层级式的 MoE 结构。

  • 门控网络或路由: 这个部分用于决定哪些 token 被发送到哪个专家。一般 input Token 会被 router 分配到一个或多个 expert 上做处理。如果是多个 expert 处理同一个 input token,那么不同 expert 的输出会再做一次 aggregate,作为 input token 的最终 output。

例如,在下图中,“More”这个 token 被发送到第二个专家,而“Parameters”这个 token 被发送到第一个专家。

图片

Token 的 router 方式是 MoE 使用中的一个关键点,因为 router 由可学习的参数组成(一般是由一个 Linear 层和一个 Softmax 层组成),并且与网络的其他部分一同进行预训练。

下图是一个更加直观的例子解释 router 是如何为 input token 指定 expert 的。第 个 token 的表示 维度是 ,其中 是模型 hidden 。 。router 的权重矩阵 的维度是 ( ,其中 是 expert 的数量。则 router scores 由 决定,从中选择 scores 值最大的 top-k 个 expert 处理该 token。

在下图中,如果采用 top-1 的 router 策略,则 、、 三个 token 分别 router 到的 expert 为 E1、E4、E2。

图片

MoE的优点

  • 任务特异性: 采用混合专家方法可以有效地充分利用多个专家模型的优势,每个专家都可以专门处理不同的任务或数据的不同部分,在处理复杂任务时取得更卓越的性能。各个专家模型能够针对不同的数据分布和模式进行建模,从而显著提升模型的准确性和泛化能力,因此模型可以更好地适应任务的复杂性。

  • 灵活性: 混合专家方法展现出卓越的灵活性,能够根据任务的需求灵活选择并组合适宜的专家模型。模型的结构允许根据任务的需要动态选择激活的专家模型,实现对输入数据的灵活处理。这使得模型能够适应不同的输入分布和任务场景,提高了模型的灵活性。

  • 高效性: 由于只有少数专家模型被激活,大部分模型处于未激活状态,混合专家模型具有很高的稀疏性。这种稀疏性带来了计算效率的提升,因为只有特定的专家模型对当前输入进行处理,减少了计算的开销。

  • 表现能力: 每个专家模型可以被设计为更加专业化,能够更好地捕捉输入数据中的模式和关系。整体模型通过组合这些专家的输出,提高了对复杂数据结构的建模能力,从而增强了模型的性能。

  • 可解释性: 由于每个专家模型相对独立,因此模型的决策过程更易于解释和理解,为用户提供更高的可解释性,这对于一些对模型决策过程有强解释要求的应用场景非常重要。

  • 适应大规模数据: 混合专家方法是处理大规模数据集的理想选择,能够有效地应对数据量巨大和特征复杂的挑战,可以利用稀疏矩阵的高效计算,利用GPU的并行能力计算所有专家层,能够有效地应对海量数据和复杂特征的挑战。

MoE的问题

尽管混合专家模型 (MoE) 提供了若干显著优势,例如更高效的预训练和与稠密模型相比更快的推理速度,但它们也伴随着一些挑战:

  • 训练复杂性: 虽然 MoE 能够实现更高效的计算预训练,但其训练相对复杂,尤其是涉及到门控网络的参数调整。为了正确地学习专家的权重和整体模型的参数,反而可能需要更多的训练时间。另外在微调阶段往往面临泛化能力不足的问题,长期以来易于引发过拟合现象。

  • 超参数调整: 选择适当的超参数,特别是与门控网络相关的参数,以达到最佳性能,是一个复杂的任务。这可能需要通过交叉验证等技术进行仔细调整。

  • 专家模型设计: 专家模型的设计对模型的性能影响显著。选择适当的专家模型结构,确保其在特定任务上有足够的表现力,是一个挑战。

  • 稀疏性失真: 在某些情况下,为了实现稀疏性,门控网络可能会过度地激活或不激活某些专家,导致模型性能下降。需要谨慎设计稀疏性调整策略,以平衡效率和性能。

  • 动态性问题: 在处理动态或快速变化的数据分布时,门控网络可能需要更加灵活的调整,以适应输入数据的变化。这需要额外的处理和设计。

  • 对数据噪声的敏感性: 混合专家模型对于数据中的噪声相对敏感,可能在一些情况下表现不如其他更简单的模型。

  • 通信宽带瓶颈: 在分布式计算环境下可能面临通信宽带瓶颈的问题。这主要涉及到混合专家模型的分布式部署,其中不同的专家模型或门控网络可能分布在不同的计算节点上。在这种情况下,模型参数的传输和同步可能导致通信开销过大,成为性能的一个瓶颈。

  • 推理挑战: MoE 模型虽然可能拥有大量参数,但在推理过程中只使用其中的一部分,这使得它们的推理速度快于具有相同数量参数的稠密模型。然而,这种模型需要将所有参数加载到内存中,因此对内存的需求非常高。

对于推理挑战,以 Mixtral 8x7B 这样的 MoE 为例,需要足够的 VRAM 来容纳一个 47B 参数的稠密模型。之所以是 47B 而不是 8 x 7B = 56B,是因为在 MoE 模型中,只有 FFN 层被视为独立的专家,而模型的其他参数是共享的。此外,假设每个token只使用两个专家,那么推理速度 (以 FLOPs 计算) 类似于使用 12B 模型 (而不是 14B 模型),因为虽然它进行了 2x7B 的矩阵乘法计算,但某些层是共享的。

示例代码

MoE 的 Pytorch 示例代码如下,大家可以自己学习并运行一下:

import torch  
import torch.nn as nn  
import torch.nn.functional as F  
from torch.utils.data import DataLoader, Dataset  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score  
import numpy as np  # 创建一些随机数据(替换为真实数据)  
num_samples = 1000  
num_features = 300  # 假设文本已经转换为固定大小的向量  
num_classes = 10    # 假设有10个类别  # 随机生成数据和标签  
X = np.random.randn(num_samples, num_features)  
y = np.random.randint(0, num_classes, num_samples)  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 定义 Dataset  
class TextDataset(Dataset):  def __init__(self, features, labels):  self.features = features  self.labels = labels  def __len__(self):  return len(self.labels)  def __getitem__(self, idx):  return torch.tensor(self.features[idx], dtype=torch.float), torch.tensor(self.labels[idx], dtype=torch.long)  # 创建 DataLoader  
train_dataset = TextDataset(X_train, y_train)  
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)  test_dataset = TextDataset(X_test, y_test)  
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)  ###模型定义  
class TopKGating(nn.Module):  def __init__(self, input_dim, num_experts, top_k=2):  super(TopKGating, self).__init__()  # 初始化线性层作为门控机制  self.gate = nn.Linear(input_dim, num_experts)  # 设置要选择的顶部专家数量  self.top_k = top_k  def forward(self, x):  # 计算每个专家的分数  gating_scores = self.gate(x)  # 选取分数最高的 top_k 个专家,并返回它们的索引和 softmax 权重  top_k_values, top_k_indices = torch.topk(F.softmax(gating_scores, dim=1), self.top_k)  return top_k_indices, top_k_values  class Expert(nn.Module):  def __init__(self, input_dim, output_dim):  super(Expert, self).__init__()  # 为每个专家定义一个简单的神经网络  self.net = nn.Sequential(  nn.Linear(input_dim, 128),  nn.ReLU(),  nn.Linear(128, output_dim)  )  def forward(self, x):  # 通过专家网络传递输入数据  return self.net(x)  class MoE(nn.Module):  def __init__(self, input_dim, num_classes, num_experts, top_k=2):  super(MoE, self).__init__()  # 设置专家数量  self.num_experts = num_experts  # 设置类别数量  self.num_classes = num_classes  # 初始化 TopK 门控层  self.gating = TopKGating(input_dim, num_experts, top_k)  # 创建专家网络的列表,每个专家是一个 Expert 实例  self.experts = nn.ModuleList([Expert(input_dim, num_classes) for _ in range(num_experts)])  def forward(self, x):  # 获取批量大小  batch_size = x.size(0)  # 通过门控层获得 top_k 专家的索引和门控权重  indices, gates = self.gating(x)  # 形状 indices:[batch_size, top_k], gates:[batch_size, top_k]  # 准备收集选定专家的输出  expert_outputs = torch.zeros(batch_size, indices.size(1), self.num_classes).to(x.device)  # 遍历每个样本和其对应的 top_k 专家  for i in range(batch_size):  for j in range(indices.size(1)):  expert_idx = indices[i, j].item()  # 获取专家的索引  expert_outputs[i, j, :] = self.experts[expert_idx](x[i].unsqueeze(0))  # 将门控权重扩展到与专家输出相同的维度  gates = gates.unsqueeze(-1).expand(-1, -1, self.num_classes)  # 形状:[batch_size, top_k, num_classes]  # 计算加权的专家输出的和  output = (gates * expert_outputs).sum(1)  return output, gates.sum(0)  # 返回模型输出和门控使用率以用于负载平衡损失计算  import torch.nn.functional as F  def moe_loss(output, target, gating_weights, lambda_balance=0.1):  # 标准损失(例如交叉熵损失)  # output 是模型的输出,target 是真实的标签  standard_loss = F.cross_entropy(output, target)  # 负载平衡损失  # gating_weights 是门控权重,表示每个专家的使用率  # 使用标准差来衡量各专家使用率的平衡程度  balance_loss = torch.std(gating_weights)  # 总损失  # 结合标准损失和负载平衡损失,lambda_balance 是一个超参数,用于控制负载平衡损失在总损失中的比重  total_loss = standard_loss + lambda_balance * balance_loss  return total_loss  # 初始化模型  
model = MoE(input_dim=num_features, num_classes=num_classes, num_experts=4, top_k=2)  
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # 训练循环  
num_epochs = 1  
for epoch in range(num_epochs):  model.train()  total_loss = 0  for features, labels in train_loader:  optimizer.zero_grad()  outputs, gating_weights = model(features)  loss = moe_loss(outputs, labels, gating_weights)  loss.backward()  optimizer.step()  total_loss += loss.item()  print(f'Epoch {epoch+1}, Loss: {total_loss/len(train_loader)}')  def evaluate(model, data_loader):  model.eval()  predictions, true_labels = [], []  with torch.no_grad():  for features, labels in data_loader:  s = time.time()  outputs, _ = model(features)  e = time.time()  print(e-s)  predicted = torch.argmax(outputs, dim=1)  predictions.extend(predicted.tolist())  true_labels.extend(labels.tolist())  return accuracy_score(true_labels, predictions)  

相关参考和推荐阅读:
[1] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
[2] A Review of Sparse Expert Models in Deep Learning
[3] https://zhuanlan.zhihu.com/p/674698482
[4] https://zhuanlan.zhihu.com/p/671434414
[5] https://zhuanlan.zhihu.com/p/673048264

这篇关于大模型面试面经:简单透彻理解MoE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766195

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验