gpt-3.5-turbo与星火认知大模型v3.5回答对比

2024-03-01 23:04

本文主要是介绍gpt-3.5-turbo与星火认知大模型v3.5回答对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

创建kernel

 // Create a kernel with OpenAI chat completionKernel kernel = Kernel.CreateBuilder().AddOpenAIChatCompletion(modelId:"使用的模型id" ,apiKey: "APIKey").Build();

使用讯飞星火认知大模型的话,可以参考我这一篇文章:

记一次WPF集成SemanticKernel+OneAPI+讯飞星火认知大模型实践 (qq.com)

使用gpt-3.5-turbo的效果

代码:

            // Example 1. Invoke the kernel with a prompt and display the resultDebug.WriteLine(await kernel.InvokePromptAsync("天空是什么颜色?"));Debug.WriteLine("-------------------------------------------------------");// Example 2. Invoke the kernel with a templated prompt and display the resultKernelArguments arguments = new() { { "topic", "sea" } };Debug.WriteLine(await kernel.InvokePromptAsync("这是什么颜色{{$topic}}?", arguments));Debug.WriteLine("-------------------------------------------------------");// Example 3. Invoke the kernel with a templated prompt and stream the results to the displayawait foreach (var update in kernel.InvokePromptStreamingAsync("这是什么颜色 {{$topic}}? 请提供一个详细的解释", arguments)){Debug.Write(update);}Debug.WriteLine("-------------------------------------------------------");// Example 4. Invoke the kernel with a templated prompt and execution settingsarguments = new(new OpenAIPromptExecutionSettings { MaxTokens = 500, Temperature = 0.5 }) { { "topic", "dogs" } };Debug.WriteLine(await kernel.InvokePromptAsync("告诉我关于这个主题的故事 {{$topic}}", arguments));// Example 5. Invoke the kernel with a templated prompt and execution settings configured to return JSON
#pragma warning disable SKEXP0013arguments = new(new OpenAIPromptExecutionSettings { ResponseFormat = "json_object" }) { { "topic", "chocolate" } };Debug.WriteLine(await kernel.InvokePromptAsync("给这种 {{$topic}} 的蛋糕用json格式制作一个食谱 ", arguments));

效果:

image-20240228115319323

一个一个看:

 // Example 1. Invoke the kernel with a prompt and display the resultDebug.WriteLine(await kernel.InvokePromptAsync("天空是什么颜色?"));Debug.WriteLine("-------------------------------------------------------");

回答:

天空的颜色通常是蓝色的。这是因为大气对太阳光的散射作用。在白天,空气中的气体和微粒会散射太阳光中的短波蓝光,使我们看到天空是蓝色的。在日落和日出时,由于光线穿过更多的大气层,散射更多的波长,使得天空呈现出橙红色。
  // Example 2. Invoke the kernel with a templated prompt and display the resultKernelArguments arguments = new() { { "topic", "sea" } };Debug.WriteLine(await kernel.InvokePromptAsync("这是什么颜色{{$topic}}?", arguments));Debug.WriteLine("-------------------------------------------------------");

回答:

"Sea" 不是一种具体的颜色,而是指海洋。海洋的颜色通常取决于许多因素,例如水深、海底的颜色、水质等等,因此海洋的颜色可能是蓝色、绿色、灰色等等不同的色调。如果你需要描述海洋的颜色,你可以根据具体情况选择最贴切的颜色描述。
  // Example 3. Invoke the kernel with a templated prompt and stream the results to the displayawait foreach (var update in kernel.InvokePromptStreamingAsync("这是什么颜色 {{$topic}}? 请提供一个详细的解释", arguments)){Debug.Write(update);}Debug.WriteLine("-------------------------------------------------------");

回答:

"Sea" 不是一种具体的颜色,因为海洋的颜色会随着不同的地点和时间而变化。一般来说,海水的颜色可以是深蓝色、浅蓝色、绿色或者灰色等。这些颜色是由海水中的水质、深度、天空的颜色、阳光的角度等因素影响而形成的。深蓝色的海水通常表示着水深和透明度很高,这种颜色在深海处很普遍。浅蓝色的海水通常会出现在沿海地区,这可能是由于波浪的搅动导致的。而绿色的海水可能是由于海洋中浮游植物的存在所导致的。另外,灰色的海水可能是由于天气阴沉或者海水中的悬浮物质造成的。综上所述,海洋的颜色是多种因素综合作用的结果,具有多样性和变化性。
   // Example 4. Invoke the kernel with a templated prompt and execution settingsarguments = new(new OpenAIPromptExecutionSettings { MaxTokens = 500, Temperature = 0.5 }) { { "topic", "dogs" } };Debug.WriteLine(await kernel.InvokePromptAsync("告诉我关于这个主题的故事 {{$topic}}", arguments));

回答:

《忠诚的狗》从前,有一个农夫,他有一只忠诚的狗,名叫小白。小白是农夫的得力助手,他每天都跟着农夫一起工作,保护庄稼,驱赶野兽。有一天,农夫生病了,病得很重,不能下地工作了。家里的存粮也所剩无几。小白看着主人的病情一天比一天严重,他心里很着急,却无计可施。一天,小白突然想到了一个主意。他决定去附近的城镇寻找帮助。于是,小白离开了农场,开始了他的旅程。在城镇上,小白遇到了一个慈祥的老人,老人看到小白的眼神中充满了忠诚和坚定,便决定跟着小白回到了农场。小白回到农场后,老人开始帮助农夫种地、照顾庄稼,而小白则继续保护庄稼,驱赶野兽。经过一段时间的努力,农夫的病情逐渐好转,庄稼也长得茁壮。农夫感激不尽,他对小白和老人说:“你们是我最忠诚的朋友,我永远不会忘记你们的帮助。”从此以后,小白、老人和

由于我们设置了MaxTokens = 500,所以这个故事由于太长了而无法完整呈现。

 // Example 5. Invoke the kernel with a templated prompt and execution settings configured to return JSON
#pragma warning disable SKEXP0013arguments = new(new OpenAIPromptExecutionSettings { ResponseFormat = "json_object" }) { { "topic", "chocolate" } };Debug.WriteLine(await kernel.InvokePromptAsync("给这种 {{$topic}} 的蛋糕用json格式制作一个食谱 ", arguments));

回答:

{"食谱名称": "巧克力蛋糕","食材": {"巧克力": "200克","黄油": "150克","糖": "150克","鸡蛋": "4个","面粉": "150克","泡打粉": "1茶匙","可可粉": "30克","牛奶": "100毫升"},"步骤": ["1. 将巧克力和黄油融化在锅中,待凉。","2. 打蛋和糖,直到颜色变浅。","3. 加入巧克力混合物,搅拌均匀。","4. 筛入面粉、泡打粉和可可粉,搅拌均匀。","5. 慢慢倒入牛奶,搅拌成浓稠的面糊。","6. 将面糊倒入预热至180°C的烤箱中,烤约30-35分钟至熟。","7. 取出蛋糕,待凉后即可享用。"]
}

返回的是json格式。

使用讯飞星火认知大模型的效果

代码与上面那个一样。

效果:

image-20240228120814852

一个一个看:

 // Example 1. Invoke the kernel with a prompt and display the resultDebug.WriteLine(await kernel.InvokePromptAsync("天空是什么颜色?"));Debug.WriteLine("-------------------------------------------------------");

回答:

天空的颜色通常是蓝色或灰色,但在日出和日落时会呈现出橙色、红色或紫色等不同的颜色。这是因为太阳的光线在穿过大气层时被散射,使得天空呈现出不同的色彩。
  // Example 2. Invoke the kernel with a templated prompt and display the resultKernelArguments arguments = new() { { "topic", "sea" } };Debug.WriteLine(await kernel.InvokePromptAsync("这是什么颜色{{$topic}}?", arguments));Debug.WriteLine("-------------------------------------------------------");

回答:

由于您没有提供足够的信息,我无法确定您所提到的颜色。
  // Example 3. Invoke the kernel with a templated prompt and stream the results to the displayawait foreach (var update in kernel.InvokePromptStreamingAsync("这是什么颜色 {{$topic}}? 请提供一个详细的解释", arguments)){Debug.Write(update);}Debug.WriteLine("-------------------------------------------------------");

回答:

海的颜色通常是蓝色或绿色。这是因为海水吸收了太阳光中的红色、黄色和橙色波长,而反射出蓝色和绿色的波长。当太阳在天空中较低时,海水会呈现出更深的蓝色,因为更多的红色和黄色波长被散射掉了。此外,海洋的颜色还受到天气、水质和深度等因素的影响。例如,当海水中含有大量的浮游生物或污染物时,它可能会呈现出混浊的绿色或棕色。
   // Example 4. Invoke the kernel with a templated prompt and execution settingsarguments = new(new OpenAIPromptExecutionSettings { MaxTokens = 500, Temperature = 0.5 }) { { "topic", "dogs" } };Debug.WriteLine(await kernel.InvokePromptAsync("告诉我关于这个主题的故事 {{$topic}}", arguments));

回答:

从前,有一个小镇,这个小镇里住着许多善良的人们。他们非常热爱动物,尤其是狗。在这个小镇上,有一个特殊的节日,叫做“狗狗节”。每年的这个时候,小镇的居民们都会为他们心爱的狗狗举办一场盛大的庆祝活动。在小镇的东边,有一户人家,他们养了一只名叫旺财的金毛犬。旺财非常聪明,而且非常忠诚。它的主人小明和小红非常喜欢旺财,把它当作家庭的一员。今年的狗狗节即将来临,小明和小红决定为旺财准备一份特别的礼物。他们想了很久,最后决定为旺财制作一顶漂亮的帽子。小明和小红开始四处寻找材料,他们找到了一些彩色的丝带、布料和纽扣。经过一番努力,他们终于为旺财制作了一顶独一无二的帽子。狗狗节那天,整个小镇都沉浸在欢乐的氛围中。狗狗们都穿上了最漂亮的衣服,戴上了最时尚的配饰。小明和小红带着旺财来到了镇上的广场,那里已经聚集了许多人和狗狗。在广场的一角,有一个舞台,上面摆放着各种狗狗表演的道具。小明和小红带着旺财走上了舞台,他们为旺财戴上了那顶漂亮的帽子。旺财立刻成为了众人瞩目的焦点,它昂首挺胸,神气十足。接下来,旺财要参加一个狗狗才艺表演比赛。比赛开始了,旺财经过了一系列的考验,展示了它的聪明才智和出色的表演能力。最后,旺财成功地完成了所有任务,赢得了比赛的冠军。比赛结束后,主持人宣布了一个重要的消息:今年的狗狗节将评选出一位“最佳狗狗主人”,以表彰那些对狗狗无微不至的照顾和关爱。经过激烈的角逐,小明和小红凭借他们对旺财的精心照料和无私奉献,成功当选为“最佳狗狗主人”。颁奖典礼上,镇长亲自为小明和小红颁发了奖杯和证书。他说:“你们是所有狗狗主人的榜样,你们的爱心和付出让我们看到了人与动物之间最美好的感情。”从那以后,小明和小红更加珍惜与旺财相处的时光。他们知道,狗狗不仅仅是宠物,更是家庭的一部分,是他们生活中不可或缺的伙伴。而那个小镇上的人们也更加关爱动物,让每一个狗狗都能过上幸福快乐的生活。
 // Example 5. Invoke the kernel with a templated prompt and execution settings configured to return JSON
#pragma warning disable SKEXP0013arguments = new(new OpenAIPromptExecutionSettings { ResponseFormat = "json_object" }) { { "topic", "chocolate" } };Debug.WriteLine(await kernel.InvokePromptAsync("给这种 {{$topic}} 的蛋糕用json格式制作一个食谱 ", arguments));

回答:

{"recipe": {"name": "Chocolate Cake","ingredients": [{"item": "flour","quantity": "2 cups"},{"item": "cocoa powder","quantity": "1 cup"},{"item": "baking powder","quantity": "1.5 teaspoons"},{"item": "salt","quantity": "1/2 teaspoon"},{"item": "sugar","quantity": "1.5 cups"},{"item": "butter","quantity": "1 cup"},{"item": "eggs","quantity": "2"},{"item": "vanilla extract","quantity": "2 teaspoons"},{"item": "boiling water","quantity": "1 cup"}],"instructions": ["Preheat the oven to 350°F (175°C).","Grease and flour two 9-inch round cake pans.","In a large bowl, mix together the flour, cocoa powder, baking powder, and salt.","In another bowl, cream together the butter and sugar until light and fluffy. Beat in the eggs one at a time, then stir in the vanilla.","Gradually blend the dry ingredients into the wet ingredients. Beat in the boiling water last. The batter will be thin.","Pour the batter evenly into the prepared pans.","Bake for 30 to 35 minutes, or until a toothpick inserted into the center of the cake comes out clean.","Allow the cakes to cool in the pans for 10 minutes, then remove from the pans and cool completely on wire racks."]}
}

返回的是json格式。

参考

semantic-kernel/dotnet/samples/KernelSyntaxExamples at main · microsoft/semantic-kernel (github.com)

推荐阅读:

记一次WPF集成SemanticKernel+OneAPI+讯飞星火认知大模型实践 (qq.com)

这篇关于gpt-3.5-turbo与星火认知大模型v3.5回答对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/764115

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Mybatis从3.4.0版本到3.5.7版本的迭代方法实现

《Mybatis从3.4.0版本到3.5.7版本的迭代方法实现》本文主要介绍了Mybatis从3.4.0版本到3.5.7版本的迭代方法实现,包括主要的功能增强、不兼容的更改和修复的错误,具有一定的参考... 目录一、3.4.01、主要的功能增强2、selectCursor example3、不兼容的更改二、

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo