【矩阵】【方向】【素数】3044 出现频率最高的素数

2024-03-01 21:20

本文主要是介绍【矩阵】【方向】【素数】3044 出现频率最高的素数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

动态规划的时间复杂度优化

本文涉及知识点

素数 矩阵 方向

LeetCode 3044 出现频率最高的素数

给你一个大小为 m x n 、下标从 0 开始的二维矩阵 mat 。在每个单元格,你可以按以下方式生成数字:
最多有 8 条路径可以选择:东,东南,南,西南,西,西北,北,东北。
选择其中一条路径,沿着这个方向移动,并且将路径上的数字添加到正在形成的数字后面。
注意,每一步都会生成数字,例如,如果路径上的数字是 1, 9, 1,那么在这个方向上会生成三个数字:1, 19, 191 。
返回在遍历矩阵所创建的所有数字中,出现频率最高的、大于 10的
素数
;如果不存在这样的素数,则返回 -1 。如果存在多个出现频率最高的素数,那么返回其中最大的那个。
注意:移动过程中不允许改变方向。
示例 1:
输入:mat = [[1,1],[9,9],[1,1]]
输出:19
解释:
从单元格 (0,0) 出发,有 3 个可能的方向,这些方向上可以生成的大于 10 的数字有:
东方向: [11], 东南方向: [19], 南方向: [19,191] 。
从单元格 (0,1) 出发,所有可能方向上生成的大于 10 的数字有:[19,191,19,11] 。
从单元格 (1,0) 出发,所有可能方向上生成的大于 10 的数字有:[99,91,91,91,91] 。
从单元格 (1,1) 出发,所有可能方向上生成的大于 10 的数字有:[91,91,99,91,91] 。
从单元格 (2,0) 出发,所有可能方向上生成的大于 10 的数字有:[11,19,191,19] 。
从单元格 (2,1) 出发,所有可能方向上生成的大于 10 的数字有:[11,19,19,191] 。
在所有生成的数字中,出现频率最高的素数是 19 。
示例 2:
输入:mat = [[7]]
输出:-1
解释:唯一可以生成的数字是 7 。它是一个素数,但不大于 10 ,所以返回 -1 。
示例 3:
输入:mat = [[9,7,8],[4,6,5],[2,8,6]]
输出:97
解释:
从单元格 (0,0) 出发,所有可能方向上生成的大于 10 的数字有: [97,978,96,966,94,942] 。
从单元格 (0,1) 出发,所有可能方向上生成的大于 10 的数字有: [78,75,76,768,74,79] 。
从单元格 (0,2) 出发,所有可能方向上生成的大于 10 的数字有: [85,856,86,862,87,879] 。
从单元格 (1,0) 出发,所有可能方向上生成的大于 10 的数字有: [46,465,48,42,49,47] 。
从单元格 (1,1) 出发,所有可能方向上生成的大于 10 的数字有: [65,66,68,62,64,69,67,68] 。
从单元格 (1,2) 出发,所有可能方向上生成的大于 10 的数字有: [56,58,56,564,57,58] 。
从单元格 (2,0) 出发,所有可能方向上生成的大于 10 的数字有: [28,286,24,249,26,268] 。
从单元格 (2,1) 出发,所有可能方向上生成的大于 10 的数字有: [86,82,84,86,867,85] 。
从单元格 (2,2) 出发,所有可能方向上生成的大于 10 的数字有: [68,682,66,669,65,658] 。
在所有生成的数字中,出现频率最高的素数是 97 。
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 6
1 <= mat[i][j] <= 9

分析

四层循环:第一层枚举起始行,第二层循环枚举起始列,第三层循环枚举方向。第三层循环:
一,num = mat[r][c]。
二,移动d格后是否越界,如果越界退出第四层循环,否则num = num*10+mat[nr][nc]。
三,所有num 如果是大于10的质数,则mNumCount[num]++。
四,找出频率最大的素数,如果有多个,返回值最大的。
时间复杂度:O(nmmax(n,m)8)。
初始化的时候:枚举所有[2,16]的质数。

代码

核心代码

class Solution {
public:int mostFrequentPrime(vector<vector<int>>& mat) {static const auto& v = CreatePrime(1000'000);static unordered_set<int> setPrime;if (setPrime.empty()){for (auto& n : v){if (n > 10){setPrime.emplace(n);}}}int move[8][2] = { {0,1},{0,-1},{1,0},{-1,0},{1,1},{-1,-1},{1,-1},{-1,1} };unordered_map<int, int> mNumCount;for (int r = 0; r < mat.size(); r++){for (int c = 0; c < mat[0].size(); c++){for (int d = 0; d < sizeof(move) / sizeof(move[0]); d++){int num = mat[r][c];for (int k = 1;; k++){const int nr = r + move[d][0] * k;const int nc = c + move[d][1] * k;if ((nr < 0) || (nr >= mat.size())){break;}if ((nc < 0) || (nc >= mat[0].size())){break;}num = num * 10 + mat[nr][nc];if (setPrime.count(num)){mNumCount[num]++;}}}}}vector<pair<int, int>> vCntNum;for (const auto& [num, cnt] : mNumCount){vCntNum.emplace_back(cnt, num);}sort(vCntNum.begin(), vCntNum.end());return vCntNum.size() ? vCntNum.rbegin()->second : -1;}
};

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}

}

int main()
{
vector<vector> mat;
{
Solution sln;
mat = { {1,1},{9,9},{1,1} };
auto res = sln.mostFrequentPrime(mat);
Assert(19, res);
}
{
Solution sln;
mat = { {7} };
auto res = sln.mostFrequentPrime(mat);
Assert(-1, res);
}
{
Solution sln;
mat = { {9,7,8} ,{4,6,5},{2,8,6} };
auto res = sln.mostFrequentPrime(mat);
Assert(97, res);
}

}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【矩阵】【方向】【素数】3044 出现频率最高的素数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763851

相关文章

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

[SWPUCTF 2021 新生赛]web方向(一到六题) 解题思路,实操解析,解题软件使用,解题方法教程

题目来源 NSSCTF | 在线CTF平台因为热爱,所以长远!NSSCTF平台秉承着开放、自由、共享的精神,欢迎每一个CTFer使用。https://www.nssctf.cn/problem   [SWPUCTF 2021 新生赛]gift_F12 这个题目简单打开后是一个网页  我们一般按F12或者是右键查看源代码。接着我们点击ctrl+f后快速查找,根据题目给的格式我们搜索c

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。  代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer> result = new ArrayList