智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用

本文主要是介绍智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TSINGSEE青犀视频智能分析网关V4内置了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,上报识别结果,并能进行语音告警播放。硬件管理平台支持RTSP、GB28181协议、以及厂家私有协议接入,可兼容市面上常见的厂家品牌设备,可兼容IPC、网络音柱等,同时也支持智能摄像头的接入。对于已部署有算法的智能摄像头,平台也能展示摄像头上传的告警信息并展示。

今天我们来介绍下AI智能分析网关V4中的安全帽检测算法、反光衣检测算法、通用工服检测算法。

1、安全帽检测算法

1)算法概述及应用:

AI智能分析网关V4安全帽检测算法基于大规模安全帽数据训练,配合现场摄像头,实现自动检测现场作业人员的安全帽佩戴情况,实时预警,减少安全事故的发生,适用于建筑工地、矿山、工厂、电厂等对现场人员作业安全要求较高的工作场所。

2)算法约束:

  • 检测目标在1080P图像中的分辨率应大于等于30*30像素;
  • 可在正常2~3米立杆高度对2米以外的事件进行检测,需视相机焦距而定,如相机焦距越大可支持的检测距离越远;
  • 头部被遮挡要小于30%,可检测常见的安全头盔、工地头盔;当出现检测目标被遮挡超过50%面积后,可能会出现误报;
  • 同一画面内目标检测数量不超过15个;
  • 避免阳光直射或逆光等情况;仅支持全彩图像,不支持黑白模式。

3)算法指标:

在1080P的分辨率目标不小于30*30的像素前提下,查全率≥90%,查准率≥95%。

2、反光衣检测算法

1)算法概述及应用:

反光衣检测算法基于大规模反光衣服数据训练,配合现场摄像头,自动监控如工地矿井、公路环卫、路政交警等特殊环境下人员是否穿着反光衣,有效防范因未着反光衣造成的意外伤害事故,高效率监督监管,适用于建筑工地、矿山、工厂、电厂、公路环卫、路政交警等工作场所。

2)算法约束:

  • 检测目标在1080P图像中的分辨率应大于等于60*60像素;
  • 可在正常2~3米立杆高度对2米以外的事件进行检测,需视相机焦距而定,如相机焦距越大可支持的检测距离越远;
  • 头部被遮挡要小于30%,可检测常见的带光衣条纹的反光衣;当出现检测目标被遮挡超过50%面积后,可能会出现误报;
  • 同一画面内目标检测数量不超过15个;
  • 避免阳光直射或逆光等情况;夜间仅支持全彩图像,若相机不支持全彩模式请使用白光灯补光。

3)算法指标:

在1080P的分辨率目标不小于60*60的像素前提下,查全率≥90%,查准率≥95%。

3、通用工服检测算法

1)算法概述及应用:

通用工服检测算法通过大量数据训练,基于人工智能视觉分析技术,能够及时发现监测区域内的未穿工服人员,并标定人员告警区域,实时告警事件上传,有效防范外部人员闯入,达到高效率监督监管。

该算法可根据实际需求构建工作服数据库,提高场景应用的匹配性,该功能需实现与“人脸库”操作类似,上传工服样式后,调用该算法时进行匹配相应数据库即可,可支持上传至少10种工服样式,适用于建筑工地,企业工厂、酒店厨房等场景。

2)算法约束:

  • 检测目标在1080P图像中的分辨率应大于等于30*30像素;
  • 算法支持自定义选择全身工服模式或者半身工服模式;
  • 目标遮挡不超过50%;
  • 支持上传至少10种工服样式;
  • 告警事件持续时间不低于3s,人在相机拍摄范围内3S以上;
  • 仅支持全彩图像,不支持黑白模式。

3)算法指标:

在1080P的分辨率目标不小于30*30的像素前提下,查全率≥90%,查准率≥95%。

TSINGSEE青犀AI智能分析网关v4硬件采用BM1684芯片,集成高性能8核ARM A53,主频高达2.3GHz,INT8峰值算力高达17.6Tops,FB32高精度算力达到2.2T。硬件目前有3种型号(8路/16路/32路),性能高、速度快,功耗低、易安装、易维护,操作简单、即插即用,同时拥有丰富的北向API接口,支撑上层业务应用大平台,可应用在工厂、工地、社区、校园、楼宇、交通等行业与领域中。

这篇关于智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763673

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1