[JSOI2011] 柠檬(斜率优化DP,优化技巧)

2024-03-01 09:20

本文主要是介绍[JSOI2011] 柠檬(斜率优化DP,优化技巧),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题面描述

题面

简要题意:
       给出一个长度为 n n n 的整数序列 s i s_i si。可以将序列任意划分成若干非空连续段。对于每一段,可以选择一个整数 s 0 s_0 s0,若该段 s 0 s_0 s0 的数量为 t t t,则该段的价值为 s 0 × t 2 s_0 \times t^2 s0×t2。请求出每一段价值之和的最大值。

       1 ≤ n ≤ 1 0 5 , 1 ≤ s i ≤ 1 0 4 1 \leq n \leq 10^5,1 \leq s_i \leq 10^4 1n1051si104

分析

       我们首先考虑怎样的一段才可能成为答案划分的一部分。如果区间 [ l , r ] [l, r] [l,r] 为一个连续段,那么我们设选出的整数为 s 0 s_0 s0。容易想到 s l = s 0 s_l = s_0 sl=s0。因为如果 s l ≠ s 0 s_l \ne s_0 sl=s0,那么我们把 s l s_l sl 单独划分成一段, [ l + 1 , r ] [l + 1, r] [l+1,r] 划分成一段,答案会更优。因为 [ l + 1 , r ] [l + 1, r] [l+1,r] 与之前答案一样,新增出来的一段 [ l , l ] [l, l] [l,l] 会多一个 s l s_l sl 的贡献。 进一步思考,我们能够发现 s r = s 0 s_r = s_0 sr=s0。这个性质和上面的类似,不再证明。
       因此我们明白了,对于一个区间 [ l , r ] [l, r] [l,r],它能够成为答案的一个连续段, 当且仅当 s l = s r s_l = s_r sl=sr,并且此时连续段选出的整数 s 0 = s l s_0 = s_l s0=sl

       基于这个性质,我们就可以dp了。设 s u m i sum_i sumi 表示 [ 1 , i ] [1, i] [1,i] s i s_i si 的数量。即 s u m i = ∑ j = 1 i [ s j = s i ] sum_i = \sum_{j = 1}^{i}[s_j = s_i] sumi=j=1i[sj=si]。设 d p i dp_i dpi 表示 i i i 个数划分成若干连续段的最大价值和。那么有转移:

       d p i ← d p i − 1 + s i dp_{i} \gets dp_{i - 1} + s_i dpidpi1+si
       d p i = max ⁡ { d p j − 1 + ( s u m i − s u m j + 1 ) 2 × s i } ( s j = s i ) dp_{i} = \max\left \{ dp_{j - 1} + (sum_{i} - sum_{j} + 1)^2 \times s_i \right \}(s_j = s_i) dpi=max{dpj1+(sumisumj+1)2×si}(sj=si)

       第一个转移式是简单的,但是第二个转移复杂度达到了 O ( n 2 ) O(n^2) O(n2)。我们考虑优化。

       观察可以发现第二个式子有点像 斜率优化,我们把式子展开进行观察。

       d p i = d p j − 1 + ( s u m i + 1 ) 2 × s i − 2 s i ( s u m i + 1 ) × s u m j + s u m j 2 × s i dp_{i} = dp_{j - 1} + (sum_i + 1)^2 \times s_i - 2s_i(sum_i + 1) \times sum_j + sum_j^2 \times s_i dpi=dpj1+(sumi+1)2×si2si(sumi+1)×sumj+sumj2×si

       由于 s i = s j s_i = s_j si=sj,我们 把第四项中的 s i s_i si 换成 s j s_j sj

       d p i = d p j − 1 + ( s u m i + 1 ) 2 × s i − 2 s i ( s u m i + 1 ) × s u m j + s u m j 2 × s j dp_i = dp_{j - 1} + (sum_i + 1)^2 \times s_i - 2s_i(sum_i + 1) \times sum_j + sum_j^2 \times s_j dpi=dpj1+(sumi+1)2×si2si(sumi+1)×sumj+sumj2×sj

       移项,可得:
       d p j − 1 + s u m j 2 × s j = 2 s i ( s u m i + 1 ) × s u m j + d p i − ( s u m i + 1 ) 2 × s i dp_{j - 1} + sum_{j}^2 \times s_j = 2s_i(sum_i + 1) \times sum_{j} + dp_{i} - (sum_i + 1)^2 \times s_i dpj1+sumj2×sj=2si(sumi+1)×sumj+dpi(sumi+1)2×si

       不难发现这就是 斜率优化 的模型,我们令 y = d p j − 1 + s u m j 2 × s j , x = s u m j y = dp_{j - 1} + sum_{j}^2 \times s_j, x = sum_j y=dpj1+sumj2×sjx=sumj。对于 i i i,斜率 k k k 是固定的,为 2 s i ( s u m i + 1 ) 2s_i(sum_i + 1) 2si(sumi+1) b = d p i − ( s u m i + 1 ) 2 × s i b = dp_i - (sum_i + 1)^2 \times s_i b=dpi(sumi+1)2×si

       由于 ( s u m i + 1 ) 2 × s i (sum_i + 1)^2 \times s_i (sumi+1)2×si 是一个定值,我们只需要让 b b b 最大即可。那么我们对不同的 s s s 值分别维护上凸包,每次二分查找 第一个 斜率 小于 当前 k k k 的点,然后 O ( 1 ) O(1) O(1) 转移即可。时间复杂度 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)

       等等!!!难道这样就结束了吗?

       我们可以发现对于一种 s s s 值,从前往后斜率是 单调递增 的。但我们要维护的是 上凸包,好像不能弹出每次 弹出队头 。 但是可以发现,队列中斜率是单调递减的,如果当前队尾不能转移给 i i i,那么它以后也不可能成为转移项,因此直接弹出队列就行了。也就是说,对于每一个 i i i,我们从 s i s_i si 的队列中从队尾往前扫,如果队尾上一个元素与队尾的斜率小于等于 k k k,那么直接弹出队尾。否则拿出队尾进行转移就好了。时间复杂度 O ( n ) O(n) O(n)

CODE:

#include<bits/stdc++.h> // 性质:区间 [l, r] 会成为划分的一部分当且仅当 sl = sr
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int n, pos[N];
LL dp[N], sum[N], a[N];
inline LL Y(int x) {return dp[x - 1] + sum[x] * sum[x] * a[x];}
inline LL X(int x) {return sum[x];}
vector< int > q[N];
int main() {scanf("%d", &n);for(int i = 1; i <= n; i ++ ) {scanf("%lld", &a[i]);sum[i] = sum[pos[a[i]]] + 1;pos[a[i]] = i;}for(int i = 1; i <= n; i ++ ) {dp[i] = dp[i - 1] + a[i]; // 基础转移int p = q[a[i]].size() - 1;while(p > 0 && (Y(q[a[i]][p]) - Y(q[a[i]][p - 1])) <= (X(q[a[i]][p]) - X(q[a[i]][p - 1])) * (2LL * a[i] * (sum[i] + 1LL))) p --, q[a[i]].pop_back(); // 斜率单增int j = (p == -1 ? -1 : q[a[i]][p]);if(j != -1) dp[i] = max(dp[i], dp[j - 1] + (sum[i] - sum[j] + 1LL) * (sum[i] - sum[j] + 1LL) * a[i]);while(p > 0 && (Y(i) - Y(q[a[i]][p])) * (X(q[a[i]][p]) - X(q[a[i]][p - 1])) >= (Y(q[a[i]][p]) - Y(q[a[i]][p - 1])) * (X(i) - X(q[a[i]][p]))) p --, q[a[i]].pop_back();q[a[i]].push_back(i);}printf("%lld\n", dp[n]);return 0;
}

这篇关于[JSOI2011] 柠檬(斜率优化DP,优化技巧)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761963

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3