[JSOI2011] 柠檬(斜率优化DP,优化技巧)

2024-03-01 09:20

本文主要是介绍[JSOI2011] 柠檬(斜率优化DP,优化技巧),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题面描述

题面

简要题意:
       给出一个长度为 n n n 的整数序列 s i s_i si。可以将序列任意划分成若干非空连续段。对于每一段,可以选择一个整数 s 0 s_0 s0,若该段 s 0 s_0 s0 的数量为 t t t,则该段的价值为 s 0 × t 2 s_0 \times t^2 s0×t2。请求出每一段价值之和的最大值。

       1 ≤ n ≤ 1 0 5 , 1 ≤ s i ≤ 1 0 4 1 \leq n \leq 10^5,1 \leq s_i \leq 10^4 1n1051si104

分析

       我们首先考虑怎样的一段才可能成为答案划分的一部分。如果区间 [ l , r ] [l, r] [l,r] 为一个连续段,那么我们设选出的整数为 s 0 s_0 s0。容易想到 s l = s 0 s_l = s_0 sl=s0。因为如果 s l ≠ s 0 s_l \ne s_0 sl=s0,那么我们把 s l s_l sl 单独划分成一段, [ l + 1 , r ] [l + 1, r] [l+1,r] 划分成一段,答案会更优。因为 [ l + 1 , r ] [l + 1, r] [l+1,r] 与之前答案一样,新增出来的一段 [ l , l ] [l, l] [l,l] 会多一个 s l s_l sl 的贡献。 进一步思考,我们能够发现 s r = s 0 s_r = s_0 sr=s0。这个性质和上面的类似,不再证明。
       因此我们明白了,对于一个区间 [ l , r ] [l, r] [l,r],它能够成为答案的一个连续段, 当且仅当 s l = s r s_l = s_r sl=sr,并且此时连续段选出的整数 s 0 = s l s_0 = s_l s0=sl

       基于这个性质,我们就可以dp了。设 s u m i sum_i sumi 表示 [ 1 , i ] [1, i] [1,i] s i s_i si 的数量。即 s u m i = ∑ j = 1 i [ s j = s i ] sum_i = \sum_{j = 1}^{i}[s_j = s_i] sumi=j=1i[sj=si]。设 d p i dp_i dpi 表示 i i i 个数划分成若干连续段的最大价值和。那么有转移:

       d p i ← d p i − 1 + s i dp_{i} \gets dp_{i - 1} + s_i dpidpi1+si
       d p i = max ⁡ { d p j − 1 + ( s u m i − s u m j + 1 ) 2 × s i } ( s j = s i ) dp_{i} = \max\left \{ dp_{j - 1} + (sum_{i} - sum_{j} + 1)^2 \times s_i \right \}(s_j = s_i) dpi=max{dpj1+(sumisumj+1)2×si}(sj=si)

       第一个转移式是简单的,但是第二个转移复杂度达到了 O ( n 2 ) O(n^2) O(n2)。我们考虑优化。

       观察可以发现第二个式子有点像 斜率优化,我们把式子展开进行观察。

       d p i = d p j − 1 + ( s u m i + 1 ) 2 × s i − 2 s i ( s u m i + 1 ) × s u m j + s u m j 2 × s i dp_{i} = dp_{j - 1} + (sum_i + 1)^2 \times s_i - 2s_i(sum_i + 1) \times sum_j + sum_j^2 \times s_i dpi=dpj1+(sumi+1)2×si2si(sumi+1)×sumj+sumj2×si

       由于 s i = s j s_i = s_j si=sj,我们 把第四项中的 s i s_i si 换成 s j s_j sj

       d p i = d p j − 1 + ( s u m i + 1 ) 2 × s i − 2 s i ( s u m i + 1 ) × s u m j + s u m j 2 × s j dp_i = dp_{j - 1} + (sum_i + 1)^2 \times s_i - 2s_i(sum_i + 1) \times sum_j + sum_j^2 \times s_j dpi=dpj1+(sumi+1)2×si2si(sumi+1)×sumj+sumj2×sj

       移项,可得:
       d p j − 1 + s u m j 2 × s j = 2 s i ( s u m i + 1 ) × s u m j + d p i − ( s u m i + 1 ) 2 × s i dp_{j - 1} + sum_{j}^2 \times s_j = 2s_i(sum_i + 1) \times sum_{j} + dp_{i} - (sum_i + 1)^2 \times s_i dpj1+sumj2×sj=2si(sumi+1)×sumj+dpi(sumi+1)2×si

       不难发现这就是 斜率优化 的模型,我们令 y = d p j − 1 + s u m j 2 × s j , x = s u m j y = dp_{j - 1} + sum_{j}^2 \times s_j, x = sum_j y=dpj1+sumj2×sjx=sumj。对于 i i i,斜率 k k k 是固定的,为 2 s i ( s u m i + 1 ) 2s_i(sum_i + 1) 2si(sumi+1) b = d p i − ( s u m i + 1 ) 2 × s i b = dp_i - (sum_i + 1)^2 \times s_i b=dpi(sumi+1)2×si

       由于 ( s u m i + 1 ) 2 × s i (sum_i + 1)^2 \times s_i (sumi+1)2×si 是一个定值,我们只需要让 b b b 最大即可。那么我们对不同的 s s s 值分别维护上凸包,每次二分查找 第一个 斜率 小于 当前 k k k 的点,然后 O ( 1 ) O(1) O(1) 转移即可。时间复杂度 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)

       等等!!!难道这样就结束了吗?

       我们可以发现对于一种 s s s 值,从前往后斜率是 单调递增 的。但我们要维护的是 上凸包,好像不能弹出每次 弹出队头 。 但是可以发现,队列中斜率是单调递减的,如果当前队尾不能转移给 i i i,那么它以后也不可能成为转移项,因此直接弹出队列就行了。也就是说,对于每一个 i i i,我们从 s i s_i si 的队列中从队尾往前扫,如果队尾上一个元素与队尾的斜率小于等于 k k k,那么直接弹出队尾。否则拿出队尾进行转移就好了。时间复杂度 O ( n ) O(n) O(n)

CODE:

#include<bits/stdc++.h> // 性质:区间 [l, r] 会成为划分的一部分当且仅当 sl = sr
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int n, pos[N];
LL dp[N], sum[N], a[N];
inline LL Y(int x) {return dp[x - 1] + sum[x] * sum[x] * a[x];}
inline LL X(int x) {return sum[x];}
vector< int > q[N];
int main() {scanf("%d", &n);for(int i = 1; i <= n; i ++ ) {scanf("%lld", &a[i]);sum[i] = sum[pos[a[i]]] + 1;pos[a[i]] = i;}for(int i = 1; i <= n; i ++ ) {dp[i] = dp[i - 1] + a[i]; // 基础转移int p = q[a[i]].size() - 1;while(p > 0 && (Y(q[a[i]][p]) - Y(q[a[i]][p - 1])) <= (X(q[a[i]][p]) - X(q[a[i]][p - 1])) * (2LL * a[i] * (sum[i] + 1LL))) p --, q[a[i]].pop_back(); // 斜率单增int j = (p == -1 ? -1 : q[a[i]][p]);if(j != -1) dp[i] = max(dp[i], dp[j - 1] + (sum[i] - sum[j] + 1LL) * (sum[i] - sum[j] + 1LL) * a[i]);while(p > 0 && (Y(i) - Y(q[a[i]][p])) * (X(q[a[i]][p]) - X(q[a[i]][p - 1])) >= (Y(q[a[i]][p]) - Y(q[a[i]][p - 1])) * (X(i) - X(q[a[i]][p]))) p --, q[a[i]].pop_back();q[a[i]].push_back(i);}printf("%lld\n", dp[n]);return 0;
}

这篇关于[JSOI2011] 柠檬(斜率优化DP,优化技巧)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761963

相关文章

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在