c/c++|红黑树|分析应用|锚点

2024-03-01 06:52

本文主要是介绍c/c++|红黑树|分析应用|锚点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

红黑树是一种自平衡的二叉查找树,它保持着良好的平衡,能够在插入和删除等操作后通过一系列旋转和重新着色操作来保持树的平衡。这种平衡性质使得红黑树在搜索、插入和删除等操作的平均和最坏情况下的时间复杂度都是O(log n)。以下是红黑树的一些关键特性和性质:每个节点要么是红色,要么是黑色。
根节点必须是黑色。
红色节点的子节点必须是黑色(不存在两个相邻的红色节点)。
从任一节点到其每个叶子的所有路径都包含相同数量的黑色节点,这被称为“黑色平衡”或“黑高度”。
红黑树的基本操作包括插入、删除、查找等。其中,插入和删除操作是通过一系列旋转和重新着色来维护红黑树的平衡性。插入操作:当插入一个新节点时,首先按照二叉查找树的规则找到其应该插入的位置。然后,将新节点插入为红色节点,这样可能会破坏红黑树的某些性质,如颜色相邻节点不能同时为红色。接下来,通过一系列的旋转和重新着色操作来修复这些性质,以确保树的平衡性。删除操作:删除操作也是通过一系列旋转和重新着色来维护树的平衡性。当删除一个节点时,首先按照二叉查找树的规则找到要删除的节点。然后,根据要删除节点的子节点情况进行不同的处理:如果要删除的节点有零个或一个子节点,直接删除即可;如果要删除的节点有两个子节点,则需要找到其后继节点(即比它大的最小节点),并用后继节点替换原节点,然后再删除后继节点。查找操作:查找操作和普通的二叉查找树一样,采用递归或迭代的方式从根节点开始逐级查找,直到找到目标节点或到达叶子节点为止。红黑树的时间复杂度和空间复杂度分析如下:时间复杂度:在红黑树中,搜索、插入和删除操作的平均和最坏情况下的时间复杂度都是O(log n),其中n是树中节点的数量。这是因为红黑树保持了良好的平衡性质,使得树的高度保持在O(log n)级别。因此,即使在最坏情况下,搜索、插入和删除操作的性能也是很高效的。空间复杂度:红黑树的空间复杂度主要取决于节点的数量。每个节点除了存储数据外,还需要存储指向父节点、左子节点和右子节点的指针,以及颜色信息。因此,红黑树的空间复杂度为O(n),其中n是树中节点的数量。
#include <iostream>enum Color { RED, BLACK };template <typename T>
struct Node {T data;Node<T> *left, *right, *parent;Color color;// ConstructorNode(T data) : data(data), left(nullptr), right(nullptr), parent(nullptr), color(RED) {}
};template <typename T>
class RedBlackTree {
private:Node<T> *root;// Private methodsvoid rotateLeft(Node<T> *&);void rotateRight(Node<T> *&);void fixInsertion(Node<T> *&);public:// ConstructorRedBlackTree() : root(nullptr) {}// Public methodsvoid insert(const T&);void printInorder() const;
};// Rotate left
template <typename T>
void RedBlackTree<T>::rotateLeft(Node<T> *&node) {Node<T> *rightChild = node->right;node->right = rightChild->left;if (node->right != nullptr)node->right->parent = node;rightChild->parent = node->parent;if (node->parent == nullptr)root = rightChild;else if (node == node->parent->left)node->parent->left = rightChild;elsenode->parent->right = rightChild;rightChild->left = node;node->parent = rightChild;
}// Rotate right
template <typename T>
void RedBlackTree<T>::rotateRight(Node<T> *&node) {Node<T> *leftChild = node->left;node->left = leftChild->right;if (node->left != nullptr)node->left->parent = node;leftChild->parent = node->parent;if (node->parent == nullptr)root = leftChild;else if (node == node->parent->left)node->parent->left = leftChild;elsenode->parent->right = leftChild;leftChild->right = node;node->parent = leftChild;
}// Fix insertion
template <typename T>
void RedBlackTree<T>::fixInsertion(Node<T> *&node) {Node<T> *parent = nullptr;Node<T> *grandparent = nullptr;while (node != root && node->color != BLACK && node->parent->color == RED) {parent = node->parent;grandparent = parent->parent;// Case : Parent is left child of Grandparentif (parent == grandparent->left) {Node<T> *uncle = grandparent->right;// Case : Uncle is RED, only recoloring requiredif (uncle != nullptr && uncle->color == RED) {grandparent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandparent;} else {// Case : Node is right child of Parentif (node == parent->right) {rotateLeft(parent);node = parent;parent = node->parent;}// Case : Node is left child of ParentrotateRight(grandparent);std::swap(parent->color, grandparent->color);node = parent;}} else {// Case : Parent is right child of GrandparentNode<T> *uncle = grandparent->left;// Case : Uncle is RED, only recoloring requiredif (uncle != nullptr && uncle->color == RED) {grandparent->color = RED;parent->color = BLACK;uncle->color = BLACK;node = grandparent;} else {// Case : Node is left child of Parentif (node == parent->left) {rotateRight(parent);node = parent;parent = node->parent;}// Case : Node is right child of ParentrotateLeft(grandparent);std::swap(parent->color, grandparent->color);node = parent;}}}root->color = BLACK;
}// Insert node into the tree
template <typename T>
void RedBlackTree<T>::insert(const T& data) {Node<T> *newNode = new Node<T>(data);Node<T> *parent = nullptr;Node<T> *current = root;while (current != nullptr) {parent = current;if (newNode->data < current->data)current = current->left;elsecurrent = current->right;}newNode->parent = parent;if (parent == nullptr)root = newNode;else if (newNode->data < parent->data)parent->left = newNode;elseparent->right = newNode;fixInsertion(newNode);
}// Inorder traversal
template <typename T>
void inorderHelper(Node<T> *root) {if (root == nullptr) return;inorderHelper(root->left);std::cout << root->data << " ";inorderHelper(root->right);
}// Print tree in inorder
template <typename T>
void RedBlackTree<T>::printInorder() const {inorderHelper(root);
}// Test
int main() {RedBlackTree<int> tree;tree.insert(10);tree.insert(20);tree.insert(30);tree.insert(15);tree.insert(25);std::cout << "Inorder traversal of the tree: ";tree.printInorder();std::cout << std::endl;return 0;
}//输出结果:Inorder traversal of the tree: 10 15 20 25 30 

先让gpt回答吧
怎么说呢,说到红黑树,必然先从avl 平衡二叉树讲起

而且红黑树在unordered_map、redis、等数据存储用很多应用

平衡性维护方式:AVL树:通过保持任意节点的左子树和右子树的高度差不超过1来维护平衡。在插入或删除节点时,可能需要进行旋转操作来保持平衡。
红黑树:通过一系列的旋转和重新着色操作来维护平衡。红黑树不追求严格的平衡,但它保证了树的黑高度是O(log n),从而保证了树的高度近似平衡。
旋转次数:AVL树:由于 AVL 树要求严格的平衡,插入或删除操作可能需要进行更多的旋转操作来保持平衡,因此在某些情况下,AVL树的旋转次数会比红黑树多。
红黑树:红黑树的平衡性维护更加宽松,旋转和重新着色的次数相对较少,因此在实践中通常比 AVL 树更高效。
性能特点:AVL树:由于 AVL 树严格追求平衡,因此在查找操作上可能比红黑树更快,因为 AVL 树的高度更低。但是在插入和删除操作上可能更耗时,因为可能需要进行更多的旋转操作。
红黑树:红黑树在插入和删除操作上的性能通常比 AVL 树更好,因为它的平衡性维护更加宽松,旋转和重新着色的次数较少。红黑树在实际应用中更为广泛,例如在C++的STL中就使用了红黑树来实现map和set等容器。
总的来说,AVL树和红黑树都是自平衡的二叉查找树,它们各有优缺点,在不同的应用场景中选择合适的数据结构是很重要的。
关联容器的实现:红黑树常被用作关联容器的底层实现,例如C++ STL中的std::map和std::set就是基于红黑树实现的。这些容器可以快速地进行查找、插入和删除操作,并且保持元素的有序性。数据库索引:数据库系统中经常需要快速地查找和更新数据,红黑树作为一种高效的数据结构,常被用作数据库索引的底层实现。它可以支持快速的数据检索操作,并且保持索引的平衡性。操作系统内核:红黑树在操作系统内核中也有广泛的应用,用于实现各种数据结构和算法。例如,在Linux内核中,红黑树被用于进程调度、文件系统、内存管理等方面。路由表:计算机网络中的路由器常使用红黑树来存储路由表,以支持快速的路由查找和更新。红黑树可以高效地存储和管理大量的网络路由信息,并且保持路由表的平衡性。内存分配器:在动态内存分配器中,红黑树可以用于管理内存分配和释放的元数据,以支持快速的内存分配和释放操作,并且保持内存分配器的高效性和平衡性。总的来说,红黑树作为一种高效的自平衡二叉查找树,具有广泛的应用领域,可以在各种场景中提供高效的数据存储和检索功能。

这篇关于c/c++|红黑树|分析应用|锚点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761549

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C