t-SNE数据降维(2维3维)及可视化

2024-03-01 03:48
文章标签 数据 可视化 降维 sne

本文主要是介绍t-SNE数据降维(2维3维)及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(最近看了一个叫光谱特征在后门攻击中的用法,读完之后发现是用了一个SVD也就是奇异值分解做了降维,然后用残差网络的representation层残差与残差的奇异值分解后的右奇异值矩阵的第一行做乘法得到correlation,疑惑得很什么时候相关性可以这么算了。于是想到降维可以不用SVD可以用TSNE,就写一下这一块的东西,融合了别人写的二维和三维的可视化)

 t-SNE全称为t-distributed Stochastic Neighbor Embedding,翻译为t-随机邻近嵌入,它是一种embedding模型,用于高维空间中的数据映射到低维空间中,并保留数据集的局部特性,该算法在论文中非常常见,主要用于高维数据的降维和可视化。
    t-SNE可以算是目前效果最好的数据降维和可视化方法之一,当我们想对高维数据集进行分类,但又不清楚这个数据集有没有很好的可分性时,可以通过t-SNE将数据投影到2维或3维空间中观察一下:如果在低维空间中具有可分性,则数据是可分的;如果在低维空间中不可分,则可能是因为数据集本身不可分,或者数据集中的数据不适合投影到低维空间。
    t-SNE将数据点之间的相似度转化为条件概率,原始空间中数据点的相似度由高斯联合分布表示,嵌入空间中数据点的相似度由学生t分布表示。通过原始空间和嵌入空间的联合概率分布的KL散度(用于评估两个分布的相似度的指标,经常用于评估机器学习模型的好坏)来评估嵌入效果的好坏,即将有关KL散度的函数作为损失函数(loss function),通过梯度下降算法最小化损失函数,最终获得收敛结果。要注意t-SNE的缺点很明显:占用内存较多、运行时间长。

1 降维
    首先,通过一个简单的示例看一下t-SNE的降维效果:输入4个5维的数据,通过t-SNE将其降维成2维的数据,代码如下:

import numpy as np
from sklearn.manifold import TSNE"""将3维数据降维2维"""# 4个3维的数据
x = np.array([[0, 0, 0, 1, 2], [0, 1, 1, 3, 5], [1, 0, 1, 7, 2], [1, 1, 1, 10, 22]])
# 嵌入空间的维度为2,即将数据降维成2维
ts = TSNE(n_components=2)
# 训练模型
ts.fit_transform(x)
# 打印结果
print(ts.embedding_)

       


2 S型曲线的降维与可视化
    S型曲线中的数据是高维的数据,不同的颜色表示不同的数据点。当我们通过t-SNE将数据嵌入到2维空间中后,可以看到数据点之间的类别信息被完整地保留了下来。代码如下:

import matplotlib.pyplot as plt
from sklearn import manifold, datasets"""对S型曲线数据的降维和可视化"""# 生成1000个S型曲线数据
x, color = datasets.samples_generator.make_s_curve(n_samples=1000, random_state=0)		# x是[1000,2]的2维数据,color是[1000,1]的一维数据n_neighbors = 10
n_components = 2# 创建自定义图像
fig = plt.figure(figsize=(8, 8))		# 指定图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		# 自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		# 创建子图
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral)		# 绘制散点图,为不同标签的点赋予不同的颜色
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 初始化视角# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
# 显示图像
plt.show()

    效果如下图所示:

 



3 手写数字数据集的降维与可视化
    手写数字数据集是一个经典的图片分类数据集,数据集中包含0-9这10个数字的灰度图片,每张图片以8*8共64个像素点表示。具体代码如

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE# 加载数据
def get_data():""":return: 数据集、标签、样本数量、特征数量"""digits = datasets.load_digits(n_class=10)data = digits.data		# 图片特征label = digits.target		# 图片标签n_samples, n_features = data.shape		# 数据集的形状return data, label, n_samples, n_features# 对样本进行预处理并画图
def plot_embedding(data, label, title):""":param data:数据集:param label:样本标签:param title:图像标题:return:图像"""x_min, x_max = np.min(data, 0), np.max(data, 0)data = (data - x_min) / (x_max - x_min)		# 对数据进行归一化处理fig = plt.figure()		# 创建图形实例ax = plt.subplot(111)		# 创建子图# 遍历所有样本for i in range(data.shape[0]):# 在图中为每个数据点画出标签plt.text(data[i, 0], data[i, 1], str(label[i]), color=plt.cm.Set1(label[i] / 10),fontdict={'weight': 'bold', 'size': 7})plt.xticks()		# 指定坐标的刻度plt.yticks()plt.title(title, fontsize=14)# 返回值return fig# 主函数,执行t-SNE降维
def main():data, label , n_samples, n_features = get_data()		# 调用函数,获取数据集信息print('Starting compute t-SNE Embedding...')ts = TSNE(n_components=2, init='pca', random_state=0)# t-SNE降维reslut = ts.fit_transform(data)# 调用函数,绘制图像fig = plot_embedding(reslut, label, 't-SNE Embedding of digits')# 显示图像plt.show()# 主函数
if __name__ == '__main__':main()

    效果截图如下:

 

4 3D可视化效果图

import tensorflow as tf
import numpy as np
from sklearn.manifold import TSNE  # TSNE集成在了sklearn中
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D  # 进行3D图像绘制import input_data  # MNIST的数据操作文件mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
saver = tf.train.import_meta_graph('model/model.ckpt.meta')  # tensorflow加载神经网络图结构
gragh = tf.get_default_graph()image_input = gragh.get_tensor_by_name('Placeholder:0')  # 获得图中预定义的输入,即MNIST图像
label_input = gragh.get_tensor_by_name('Placeholder_1:0')  # 获得对应图像的标签
predict = gragh.get_tensor_by_name('fco/BiasAdd:0')  # 获得网络的输出值with tf.Session() as sess:sess.run(tf.global_variables_initializer())saver.restore(sess, tf.train.latest_checkpoint("model"))  # tensorflow恢复神经网络参数到当前图# 方便快速计算,只取训练集前面2000个数据进行可视化。pre = sess.run(predict,feed_dict={image_input: mnist.test.images[:2000, :], label_input: mnist.test.labels[:2000, :]})# TSNE进行降维计算,n_components代表降维维度embedded = TSNE(n_components=3).fit_transform(pre)# 对数据进行归一化操作x_min, x_max = np.min(embedded, 0), np.max(embedded, 0)embedded = embedded / (x_max - x_min)# 创建显示的figurefig = plt.figure()ax = Axes3D(fig)# 将数据对应坐标输入到figure中,不同标签取不同的颜色,MINIST共0-9十个手写数字ax.scatter(embedded[:, 0], embedded[:, 1], embedded[:, 2],c=plt.cm.Set1(np.argmax(mnist.test.labels[:2000, :], axis=1) / 10.0))# 关闭了plot的坐标显示plt.axis('off')plt.show()

3D可视化效果图,不同颜色代表不同的数字类别

在这里插入图片描述

这篇关于t-SNE数据降维(2维3维)及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761117

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动