用于清洗从hbase中捞取出来的数据code

2024-02-29 23:18

本文主要是介绍用于清洗从hbase中捞取出来的数据code,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

"""用于清洗从hbase中捞取出来的数据author:tiandate: 2020-02-27
"""import pandas as pddef get_data(path):data = pd.read_excel(path, names=['glassid_operacode', 'attribute', 'name', 'value'])glassid_operacode = data['glassid_operacode'].str.split('_')glass_id = []opera_code = []for i in range(len(glassid_operacode)):glass_id.append(glassid_operacode[i][0][::-1])opera_code.append(glassid_operacode[i][1])data['glass_id'] = glass_iddata['opera_code'] = opera_codedata = data.drop('glassid_operacode', axis=1)return data# 基本属性
def get_mea_data(data, model_str):mea_data = data.loc[data['attribute'] == 'mea', :]mea_data.loc[:, 'name'] = mea_data['name'].str.replace(model_str, '')mea_data = mea_data.drop_duplicates(keep='first')mea_data.dropna(how='any', axis=0, inplace=True)ID = list(set(mea_data['glass_id']))mea = pd.DataFrame()for i in ID:id_data = mea_data.loc[mea_data['glass_id'] == i, :]local_data = id_data.loc[:, ['name', 'value']].Tlocal_data.columns = local_data.loc['name'].tolist()local_data.drop('name', axis=0, inplace=True)if mea.empty:mea = local_dataelse:mea = pd.concat([mea, local_data])mea.reset_index(drop=True, inplace=True)col_list = mea.columns.tolist()col_list.remove('glass_id')col_list.insert(0, 'glass_id')mea = mea.loc[:, col_list]return mea# X
def get_pro_data(data, model_str):pro_data = data.loc[data['attribute'] == 'pro', :]pro_data['value'] = pro_data['value'].astype(float)pro_data.loc[:, 'name'] = pro_data['name'].str.replace(model_str, '')pros = pro_data.pivot_table(index=['glass_id'], columns=['name'], values=['value'])pros.columns = pros.columns.droplevel(0)pros.reset_index()pro_ = pd.concat([pros, pd.DataFrame(data=pros.index.tolist(), columns=[pros.index.name],index=pros.index.tolist())], axis=1)col_list = pro_.columns.tolist()col_list.remove('glass_id')col_list.insert(0, 'glass_id')pro = pro_.loc[:, col_list]pro.reset_index(drop=True, inplace=True)return pro# 预测值Y
def get_pre_data(data, model_str):pre_data = data.loc[data['attribute'] == 'pre', :]pre_data.loc[:, 'name'] = pre_data['name'].str.replace('133_', '')pre_data['value'] = pre_data['value'].astype(float)pre = pre_data.pivot_table(index=['glass_id'], columns=['name'], values=['value'])pre.columns = pre.columns.droplevel(0)pre.reset_index()return pre# 量测值(真实值)Y
def get_real_data(data,model_str):real_data = data.loc[data['attribute'] == 'real', :]real_ = real_data.loc[real_data['name'] != 'glass_start_time', :]real_['value'] = real_['value'].astype(float)rea = real_.pivot_table(index=['glass_id'], columns=['name'], values=['value'])rea.columns = rea.columns.droplevel(0)rea.reset_index()glass_time = real_data.loc[real_data['name'] == 'glass_start_time', :]glass_time.drop(['attribute', 'name', 'opera_code'], axis=1, inplace=True)glass_time.rename(columns={'value': 'glass_start_time'}, inplace=True)glass_time.set_index(['glass_id'], inplace=True)real = pd.concat([rea, glass_time], axis=1)return real# 拼接所有值
def get_total_data(data, model_str):mea = get_mea_data(data, model_str)pro = get_pro_data(data, model_str)pre = get_pre_data(data, model_str)real = get_real_data(data, model_str)mea_pro = pd.merge(mea, pro)mea_pro.set_index(['glass_id'], inplace=True)pre.rename(columns={'rs_avg': 'pre_rs_avg'}, inplace=True)pre_rea = pd.concat([pre, real], axis=1)deal_data = pd.concat([mea_pro, pre_rea], axis=1)deal_data.reset_index(inplace=True)deal_data.rename(columns={'index': 'glass_id'}, inplace=True)return deal_dataif __name__ == '__main__':path = r'C:\Users\Administrator\Desktop\预测为均值\最新\133.xlsx'model = '133_'data = get_data(path)deal_data = get_total_data(data, model)deal_data.to_excel(r'C:\Users\Administrator\Desktop\预测为均值\最新\deal_data133.xlsx', index=None)

这篇关于用于清洗从hbase中捞取出来的数据code的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/760427

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加