Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)

本文主要是介绍Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在PyTorch框架内,执行CIFAR-100识别任务使用Vision Transformer(ViT)模型可以分为以下步骤:

  1. 导入必要的库。
  2. 加载和预处理CIFAR-100数据集。
  3. 定义ViT模型架构。
  4. 设置训练过程(包括损失函数、优化器等)。
  5. 训练模型。
  6. 测试模型性能。

示例代码

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights# 1. 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 2. 加载并预处理CIFAR-100数据集
transform = transforms.Compose([transforms.Resize((224, 224)),  # ViT期望的输入尺寸transforms.ToTensor(),transforms.Normalize(0.5, 0.5)
])trainset = torchvision.datasets.CIFAR100(root='./data', train=True,download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,shuffle=True)testset = torchvision.datasets.CIFAR100(root='./data', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,shuffle=False)# 3. 定义ViT模型
weights = ViT_B_16_Weights.DEFAULT
model = vit_b_16(weights=weights)
model.heads[0] = nn.Linear(model.heads[0].in_features, 100)  # 修改分类头为100类# 如果有可用的GPU,则将模型转到GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)# 4. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 5. 训练模型
for epoch in range(10):  # 遍历数据集多次running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 200 == 199:  # 每200个批次打印一次print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 200:.3f}')running_loss = 0.0print('Finished Training')# 6. 评估模型
correct = 0
total = 0
with torch.no_grad():for data in testloader:images, labels = dataimages, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')

在这个代码示例中,我们使用了ViT_B_16_Weights来自动获取适合ImageNet预训练的权重。然后我们修改了分类头,以适应CIFAR-100数据集的100个类别。请确保安装了最新版本的torchvision,因为早期版本可能不包含Vision Transformer模型。

ViT-B-16模型介绍

在这里插入图片描述

ViT-B-16是Vision Transformer(ViT)模型的一个变体,由Google在2020年提出。ViT模型是一种应用于图像识别任务的Transformer架构,它采用了在自然语言处理(NLP)中非常成功的Transformer模型,并将其调整以处理图像数据。
以下是ViT-B-16模型的一些关键特点:

Transformer 架构

ViT将图像分割为固定大小的patches(例如,16x16像素的小块),将它们线性嵌入为一维向量,并在这些向量前加上位置编码,然后将它们输入到Transformer结构中。
Transformer结构利用自注意力机制,它允许模型关注图像的不同部分以提取特征,而无需任何卷积层(全局特征)。

ViT-B-16的参数

“B”指的是“Base”模型大小,它指定了模型的宽度和深度,即Transformer的层数(encoder blocks)和每层的隐藏单元数目。
“16”指的是将图像分割为16x16像素大小的patches。

训练和数据

ViT模型通常需要大量的数据来进行训练,因为Transformer架构本身不具备卷积神经网络(CNN)的归纳偏置(inductive biases),如平移不变性和局部性。因此,ViT依赖于大量数据来学习这些特性。
ViT在大型数据集(如ImageNet或JFT-300M)上进行预训练,然后可以在较小的数据集上进行微调,例如CIFAR-100。

性能

当训练数据足够多时,ViT的性能可以与当时的最先进CNN模型相匹敌或超过它们,特别是在大规模图像识别任务中。
总的来说,ViT-B-16模型是在图像处理领域引入Transformer架构的突破性尝试,它展示了Transformer结构在处理除了文本以外的数据类型时的潜力。

在PyTorch中实现ViT-B-16模型的代码可能会涉及到使用预训练的模型,或者使用像huggingface/transformers这样的库,这些库提供了Transformer模型的预训练版本和用于微调的工具。

这篇关于Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759842

相关文章

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer