Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)

本文主要是介绍Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在PyTorch框架内,执行CIFAR-100识别任务使用Vision Transformer(ViT)模型可以分为以下步骤:

  1. 导入必要的库。
  2. 加载和预处理CIFAR-100数据集。
  3. 定义ViT模型架构。
  4. 设置训练过程(包括损失函数、优化器等)。
  5. 训练模型。
  6. 测试模型性能。

示例代码

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights# 1. 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 2. 加载并预处理CIFAR-100数据集
transform = transforms.Compose([transforms.Resize((224, 224)),  # ViT期望的输入尺寸transforms.ToTensor(),transforms.Normalize(0.5, 0.5)
])trainset = torchvision.datasets.CIFAR100(root='./data', train=True,download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,shuffle=True)testset = torchvision.datasets.CIFAR100(root='./data', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,shuffle=False)# 3. 定义ViT模型
weights = ViT_B_16_Weights.DEFAULT
model = vit_b_16(weights=weights)
model.heads[0] = nn.Linear(model.heads[0].in_features, 100)  # 修改分类头为100类# 如果有可用的GPU,则将模型转到GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)# 4. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 5. 训练模型
for epoch in range(10):  # 遍历数据集多次running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 200 == 199:  # 每200个批次打印一次print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 200:.3f}')running_loss = 0.0print('Finished Training')# 6. 评估模型
correct = 0
total = 0
with torch.no_grad():for data in testloader:images, labels = dataimages, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')

在这个代码示例中,我们使用了ViT_B_16_Weights来自动获取适合ImageNet预训练的权重。然后我们修改了分类头,以适应CIFAR-100数据集的100个类别。请确保安装了最新版本的torchvision,因为早期版本可能不包含Vision Transformer模型。

ViT-B-16模型介绍

在这里插入图片描述

ViT-B-16是Vision Transformer(ViT)模型的一个变体,由Google在2020年提出。ViT模型是一种应用于图像识别任务的Transformer架构,它采用了在自然语言处理(NLP)中非常成功的Transformer模型,并将其调整以处理图像数据。
以下是ViT-B-16模型的一些关键特点:

Transformer 架构

ViT将图像分割为固定大小的patches(例如,16x16像素的小块),将它们线性嵌入为一维向量,并在这些向量前加上位置编码,然后将它们输入到Transformer结构中。
Transformer结构利用自注意力机制,它允许模型关注图像的不同部分以提取特征,而无需任何卷积层(全局特征)。

ViT-B-16的参数

“B”指的是“Base”模型大小,它指定了模型的宽度和深度,即Transformer的层数(encoder blocks)和每层的隐藏单元数目。
“16”指的是将图像分割为16x16像素大小的patches。

训练和数据

ViT模型通常需要大量的数据来进行训练,因为Transformer架构本身不具备卷积神经网络(CNN)的归纳偏置(inductive biases),如平移不变性和局部性。因此,ViT依赖于大量数据来学习这些特性。
ViT在大型数据集(如ImageNet或JFT-300M)上进行预训练,然后可以在较小的数据集上进行微调,例如CIFAR-100。

性能

当训练数据足够多时,ViT的性能可以与当时的最先进CNN模型相匹敌或超过它们,特别是在大规模图像识别任务中。
总的来说,ViT-B-16模型是在图像处理领域引入Transformer架构的突破性尝试,它展示了Transformer结构在处理除了文本以外的数据类型时的潜力。

在PyTorch中实现ViT-B-16模型的代码可能会涉及到使用预训练的模型,或者使用像huggingface/transformers这样的库,这些库提供了Transformer模型的预训练版本和用于微调的工具。

这篇关于Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759842

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

SpringBoot中使用定时任务schedule详解

《SpringBoot中使用定时任务schedule详解》文章介绍了如何在Spring应用中使用@EnableScheduling注解启用定时任务,并创建一个配置类来定义定时任务的执行,文章还详细解释... 目录1、在spring启动类上添加注解@EnableScheduling2、创建定时任务配置类3、执

浅析Python中如何处理Socket超时

《浅析Python中如何处理Socket超时》在网络编程中,Socket是实现网络通信的基础,本文将深入探讨Python中如何处理Socket超时,并提供完整的代码示例和最佳实践,希望对大家有所帮助... 目录开篇引言核心要点逐一深入讲解每个要点1. 设置Socket超时2. 处理超时异常3. 使用sele

SpringMVC配置、映射与参数处理​入门案例详解

《SpringMVC配置、映射与参数处理​入门案例详解》文章介绍了SpringMVC框架的基本概念和使用方法,包括如何配置和编写Controller、设置请求映射规则、使用RestFul风格、获取请求... 目录1.SpringMVC概述2.入门案例①导入相关依赖②配置web.XML③配置SpringMVC

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用