【深度优先搜索】【图论】【推荐】332. 重新安排行程

2024-02-29 16:36

本文主要是介绍【深度优先搜索】【图论】【推荐】332. 重新安排行程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

动态规划的时间复杂度优化

本文涉及知识点

深度优先搜索 图论

LeetCode332. 重新安排行程

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

示例 1:
在这里插入图片描述

输入:tickets = [[“MUC”,“LHR”],[“JFK”,“MUC”],[“SFO”,“SJC”],[“LHR”,“SFO”]]
输出:[“JFK”,“MUC”,“LHR”,“SFO”,“SJC”]
示例 2:
在这里插入图片描述

输入:tickets = [[“JFK”,“SFO”],[“JFK”,“ATL”],[“SFO”,“ATL”],[“ATL”,“JFK”],[“ATL”,“SFO”]]
输出:[“JFK”,“ATL”,“JFK”,“SFO”,“ATL”,“SFO”]
解释:另一种有效的行程是 [“JFK”,“SFO”,“ATL”,“JFK”,“ATL”,“SFO”] ,但是它字典排序更大更靠后。

提示:
1 <= tickets.length <= 300
tickets[i].length == 2
fromi.length == 3
toi.length == 3
fromi 和 toi 由大写英文字母组成
fromi != toi

基础知识

定义

如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。
如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit)。

性质

性质一:一个有向图是欧拉回路 ⟺ \iff 所有顶点的入度等于出度且该图是连通图。
性质二:一个有向图是欧拉路径 ⟺ \iff 起点出度等于入度+1,终点入度=出度+1,其它顶点的入度等于出度且该图是连通图。
欧拉路径和回路符合性质比较简单,不证明。下面只证明性质一必定是欧拉回路,性质二是欧拉路径。

证明一

设有向图G符合性质一。
操作一:以任意定点为起点s,选取s的任意临接点n1,删除sn1后,除s外,其它顶点都是出度等于入度,就是进入后,一定会离开。由于顶点的出度和入度是有限的,所以一定会结束,而结束点一定是s(因为只有它入度大于出度)。设删除经过的路径为P1。
最后一次经过s后,可能有些点入度并不为0。
→ { ∗ ∗ 操作二 ∗ ∗ 图 G 删除 P 1 各边,此时余下的边 P 2 仍然符合性质一。 P 1 经过的各点,一定有点 n 2 出度不为 0 。否则与连通图矛盾。 \rightarrow\begin{cases}**操作二**图G删除P1各边,此时余下的边P2仍然符合性质一。\\ P1经过的各点,一定有点n2出度不为0。否则与连通图矛盾。\\ \end{cases} {操作二G删除P1各边,此时余下的边P2仍然符合性质一。P1经过的各点,一定有点n2出度不为0。否则与连通图矛盾。
操作二时:如果有重边,经过几次则删除几条。
以n2为起点对P2进行操作一,得到P3,必定以n2开始和结尾。
用P3替换P1的n2节点。如此往复直到所有节点出度入度为0。

证明二

设有向图G符合性质二,s出度=入度+1,e入度=出度+1。一定存在以s为起点,e为终点的路径P1。选取方法类似证明一,多个出边任选一条出边。图G删除P1后,为P2;P2要么为空,要么符合性质二。

深度优先搜索

题目确保某条从JFK为起点的路径是欧拉路径。
如果是欧拉环路:所有点出度等于入度。
如果不是环路:起点出度-1==入度 终点入度=出度+1,其它节点入度等于出度。
必须确保起点最后访问终点那一支,其它访问顺序按字典需。

DFS 函数

在这里插入图片描述

主函数

DFS(“JFK”)
颠倒m_vRes的顺序
返回m_vRet。

示例和时序图

在这里插入图片描述
在这里插入图片描述

按时间线访问m_vRes的顺序:DAFEACBA。转置(颠倒顺序)后为:ABCAEFAD。

证明:

假定图G的欧拉路径最后一个出度大于1的节点为c,它共有m+1+n条出边,按邻接字典序排序后,第m+1条出边指向终点e。
步骤一:只讨论节点c及之后的路径。设c的临接点按字典序分别为:n[1] …n[m+n+1]。
除DFS(n[1+m] → \rightarrow e)可以直接结束,其它节点都必须等所有A的出边都访问结束(包括n[1+m]),所以 n[1+m] → \rightarrow e 的逆序最先加到vRet。
c → \rightarrow n[n+m+1]是c最后一条出边,故将 n[i+m+1] → \rightarrow c 的逆序放到vRet 中。
c → \rightarrow n[n+m ]是c最倒数第二条出边,故将 n[i+m] → \rightarrow c 的逆序放到vRet 中。
⋯ \cdots 将 n[1+m+1] → \rightarrow c 的逆序放到vRet 中。
⋮ \vdots
⋯ \cdots 将 n[m] → \rightarrow c 的逆序放到vRet 中。
⋯ \cdots n[1 ] → \rightarrow c 的逆序放到vRet 中。
将c 放到vRet 中。
步骤二:将图G 节点c及之后节点的出边都删除。c变成新的终点。
不断持续步骤一二到所有节点的出度为1。注意:c等于e也符合。

代码

核心代码

class Solution {
public:vector<string> findItinerary(vector<vector<string>>& tickets) {std::unordered_map<string, multiset<string>> mNeiBo;for (const auto& v : tickets){mNeiBo[v[0]].emplace(v[1]);}DFS(mNeiBo, "JFK");std::reverse(m_vRet.begin(), m_vRet.end());return m_vRet;}void DFS(std::unordered_map<string, multiset<string>>& mNeiBo,const string& cur){while (mNeiBo[cur].size()){auto next = *mNeiBo[cur].begin();mNeiBo[cur].erase(mNeiBo[cur].begin());DFS(mNeiBo, next);}m_vRet.emplace_back(cur);}vector<string> m_vRet;
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<string>> tickets;{Solution sln;tickets = { {"MUC","LHR"},{"JFK","MUC"},{"SFO","SJC"},{"LHR","SFO"} };auto res = sln.findItinerary(tickets);Assert({ "JFK","MUC","LHR","SFO","SJC" }, res);}{Solution sln;tickets = { {"JFK","SFO"},{"JFK","ATL"},{"SFO","ATL"},{"ATL","JFK"},{"ATL","SFO"} };auto res = sln.findItinerary(tickets);Assert({ "JFK","ATL","JFK","SFO","ATL","SFO" }, res);}
}

2023年4月

class Solution {
public:vector<string> findItinerary(vector<vector<string>>& tickets) {		for (const auto& v : tickets){m_vNeiB[v[0]].emplace(v[1]);}dfs("JFK");std::reverse(m_vRet.begin(), m_vRet.end());return m_vRet;}void dfs(const string& sCur){while (m_vNeiB.count(sCur) && m_vNeiB[sCur].size()){const string sNext = m_vNeiB[sCur].top();m_vNeiB[sCur].pop();dfs(sNext);}m_vRet.emplace_back(sCur);}std::unordered_map < string, std::priority_queue<string, vector<string>, greater<string>>> m_vNeiB;vector<string> m_vRet;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先搜索】【图论】【推荐】332. 重新安排行程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759389

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

在 Windows 上安装 DeepSeek 的完整指南(最新推荐)

《在Windows上安装DeepSeek的完整指南(最新推荐)》在Windows上安装DeepSeek的完整指南,包括下载和安装Ollama、下载DeepSeekRXNUMX模型、运行Deep... 目录在www.chinasem.cn Windows 上安装 DeepSeek 的完整指南步骤 1:下载并安装

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe