【深度优先搜索】【图论】【推荐】332. 重新安排行程

2024-02-29 16:36

本文主要是介绍【深度优先搜索】【图论】【推荐】332. 重新安排行程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

动态规划的时间复杂度优化

本文涉及知识点

深度优先搜索 图论

LeetCode332. 重新安排行程

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

示例 1:
在这里插入图片描述

输入:tickets = [[“MUC”,“LHR”],[“JFK”,“MUC”],[“SFO”,“SJC”],[“LHR”,“SFO”]]
输出:[“JFK”,“MUC”,“LHR”,“SFO”,“SJC”]
示例 2:
在这里插入图片描述

输入:tickets = [[“JFK”,“SFO”],[“JFK”,“ATL”],[“SFO”,“ATL”],[“ATL”,“JFK”],[“ATL”,“SFO”]]
输出:[“JFK”,“ATL”,“JFK”,“SFO”,“ATL”,“SFO”]
解释:另一种有效的行程是 [“JFK”,“SFO”,“ATL”,“JFK”,“ATL”,“SFO”] ,但是它字典排序更大更靠后。

提示:
1 <= tickets.length <= 300
tickets[i].length == 2
fromi.length == 3
toi.length == 3
fromi 和 toi 由大写英文字母组成
fromi != toi

基础知识

定义

如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。
如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit)。

性质

性质一:一个有向图是欧拉回路 ⟺ \iff 所有顶点的入度等于出度且该图是连通图。
性质二:一个有向图是欧拉路径 ⟺ \iff 起点出度等于入度+1,终点入度=出度+1,其它顶点的入度等于出度且该图是连通图。
欧拉路径和回路符合性质比较简单,不证明。下面只证明性质一必定是欧拉回路,性质二是欧拉路径。

证明一

设有向图G符合性质一。
操作一:以任意定点为起点s,选取s的任意临接点n1,删除sn1后,除s外,其它顶点都是出度等于入度,就是进入后,一定会离开。由于顶点的出度和入度是有限的,所以一定会结束,而结束点一定是s(因为只有它入度大于出度)。设删除经过的路径为P1。
最后一次经过s后,可能有些点入度并不为0。
→ { ∗ ∗ 操作二 ∗ ∗ 图 G 删除 P 1 各边,此时余下的边 P 2 仍然符合性质一。 P 1 经过的各点,一定有点 n 2 出度不为 0 。否则与连通图矛盾。 \rightarrow\begin{cases}**操作二**图G删除P1各边,此时余下的边P2仍然符合性质一。\\ P1经过的各点,一定有点n2出度不为0。否则与连通图矛盾。\\ \end{cases} {操作二G删除P1各边,此时余下的边P2仍然符合性质一。P1经过的各点,一定有点n2出度不为0。否则与连通图矛盾。
操作二时:如果有重边,经过几次则删除几条。
以n2为起点对P2进行操作一,得到P3,必定以n2开始和结尾。
用P3替换P1的n2节点。如此往复直到所有节点出度入度为0。

证明二

设有向图G符合性质二,s出度=入度+1,e入度=出度+1。一定存在以s为起点,e为终点的路径P1。选取方法类似证明一,多个出边任选一条出边。图G删除P1后,为P2;P2要么为空,要么符合性质二。

深度优先搜索

题目确保某条从JFK为起点的路径是欧拉路径。
如果是欧拉环路:所有点出度等于入度。
如果不是环路:起点出度-1==入度 终点入度=出度+1,其它节点入度等于出度。
必须确保起点最后访问终点那一支,其它访问顺序按字典需。

DFS 函数

在这里插入图片描述

主函数

DFS(“JFK”)
颠倒m_vRes的顺序
返回m_vRet。

示例和时序图

在这里插入图片描述
在这里插入图片描述

按时间线访问m_vRes的顺序:DAFEACBA。转置(颠倒顺序)后为:ABCAEFAD。

证明:

假定图G的欧拉路径最后一个出度大于1的节点为c,它共有m+1+n条出边,按邻接字典序排序后,第m+1条出边指向终点e。
步骤一:只讨论节点c及之后的路径。设c的临接点按字典序分别为:n[1] …n[m+n+1]。
除DFS(n[1+m] → \rightarrow e)可以直接结束,其它节点都必须等所有A的出边都访问结束(包括n[1+m]),所以 n[1+m] → \rightarrow e 的逆序最先加到vRet。
c → \rightarrow n[n+m+1]是c最后一条出边,故将 n[i+m+1] → \rightarrow c 的逆序放到vRet 中。
c → \rightarrow n[n+m ]是c最倒数第二条出边,故将 n[i+m] → \rightarrow c 的逆序放到vRet 中。
⋯ \cdots 将 n[1+m+1] → \rightarrow c 的逆序放到vRet 中。
⋮ \vdots
⋯ \cdots 将 n[m] → \rightarrow c 的逆序放到vRet 中。
⋯ \cdots n[1 ] → \rightarrow c 的逆序放到vRet 中。
将c 放到vRet 中。
步骤二:将图G 节点c及之后节点的出边都删除。c变成新的终点。
不断持续步骤一二到所有节点的出度为1。注意:c等于e也符合。

代码

核心代码

class Solution {
public:vector<string> findItinerary(vector<vector<string>>& tickets) {std::unordered_map<string, multiset<string>> mNeiBo;for (const auto& v : tickets){mNeiBo[v[0]].emplace(v[1]);}DFS(mNeiBo, "JFK");std::reverse(m_vRet.begin(), m_vRet.end());return m_vRet;}void DFS(std::unordered_map<string, multiset<string>>& mNeiBo,const string& cur){while (mNeiBo[cur].size()){auto next = *mNeiBo[cur].begin();mNeiBo[cur].erase(mNeiBo[cur].begin());DFS(mNeiBo, next);}m_vRet.emplace_back(cur);}vector<string> m_vRet;
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<string>> tickets;{Solution sln;tickets = { {"MUC","LHR"},{"JFK","MUC"},{"SFO","SJC"},{"LHR","SFO"} };auto res = sln.findItinerary(tickets);Assert({ "JFK","MUC","LHR","SFO","SJC" }, res);}{Solution sln;tickets = { {"JFK","SFO"},{"JFK","ATL"},{"SFO","ATL"},{"ATL","JFK"},{"ATL","SFO"} };auto res = sln.findItinerary(tickets);Assert({ "JFK","ATL","JFK","SFO","ATL","SFO" }, res);}
}

2023年4月

class Solution {
public:vector<string> findItinerary(vector<vector<string>>& tickets) {		for (const auto& v : tickets){m_vNeiB[v[0]].emplace(v[1]);}dfs("JFK");std::reverse(m_vRet.begin(), m_vRet.end());return m_vRet;}void dfs(const string& sCur){while (m_vNeiB.count(sCur) && m_vNeiB[sCur].size()){const string sNext = m_vNeiB[sCur].top();m_vNeiB[sCur].pop();dfs(sNext);}m_vRet.emplace_back(sCur);}std::unordered_map < string, std::priority_queue<string, vector<string>, greater<string>>> m_vNeiB;vector<string> m_vRet;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先搜索】【图论】【推荐】332. 重新安排行程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/759389

相关文章

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR