6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4

2024-02-29 07:18

本文主要是介绍6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

索贝尔算子(Sobel)

Matlab梯度(Sobel)实战


索贝尔算子(Sobel

人们其实做导数和边的时间已经很长了。最经典的是Sobel运算,它是以一个叫索贝尔的人的名字命名的。

Sobel运算就像我给你们看的上面的图片一样。但不是 \frac{1}{2} 和 -\frac{1}{2},它很奇怪的是它在乘以\frac{1}{8}

可以看到,它不仅是-2 +2 ,然后除以4得到相同的值。如图:

但它在我上面的行上也有-1  +1 ,在我下面的行上也有-1  +1 。如图:

(还记得我们之前说过的吗?我们假设我们的图像是局部的这种平滑,它们的变化相似吗?)

这里的想法:如果我要计算一个像素点的导数,我不会只看左边,右边,还要附近。

然后要使它标准化,你需要把它除以8。

MATLAB有一个内建函数叫做imgradientxy。他们说,我们可以用这个函数来计算梯度吗?

因为这是一个更高级的问题集的一部分而且他们已经做了梯度,我说当然。

突然间,人们有了各种各样的问题。原因是,如果你查imgradientxy,它会告诉你它默认应用了Sobel运算。

这是Sobel运算。看起来不错,但你知道吗? 它不除以8。(也就是不标准化)

所以他们所有的梯度被缩放了8倍,它把整个班级都搞砸了。

现在我们告诉他们你可以使用imgradientxy,但你最好除以8。

顺便说一下,y也在这里,在这里y是正向上的。如图:

那么Sobel梯度就是由Sx和Sy的应用组成来得到这些值。

大小就是各自的平方和的平方根。

我应该说gx是Sx的应用,gy是Sy的应用。如图:

大小就是我们之前做的。

这是arctan2,为了得到梯度,我们讨论过的atan2。如图:

这是一个古老的例子。

我知道它很古老,因为它是X窗口,甚至比你们大多数人出生的时间还要早。

这里是一个梯度,所以你只需应用Sobel算子,取平方和的平方根。

顺便说一下,你可以取临界值。如图:

你会注意到两件事。

一,它不是一个可怕的边缘图像;

二,它不是一个伟大的边缘图像;

我们可以在一定程度上要做到这一点。

Matlab梯度(Sobel)实战

有很多著名的边缘运算。

这是Sobel、Prewitt和Roberts,你们可以看到他们用了不同的方法。

实际上,在Matlab中有一个很酷的小函数叫做fspecial,它会根据你的名字为你做过滤器,

可能只在imfilter工具箱里或者基本的Matlab中。但是你可以给它高斯函数,你可以给它一些东西,你可以给它Sobel。

>> filt = fspecial('sobel');

如果你给它Sobel,它会做的是它会回复这个运算。如图:

在这种情况下,顺便说一下,在Matlab中把所有东西都翻倍,如果我把它应用到某个图像上。如下:

>> outim = imfilter(double(im), filt);

这是我的图像的两倍,我应用滤镜,然后我显示它,我使用一个灰色的颜色。如下:

>> imagesc(outim);
>> colormap gray;

运行代码,如下:

你可以看到它给了我一个梯度图像,这是 y 梯度,它还会返回 x 梯度。

小测验:

最好使用梯度计算是哪一种?

A、选择卷积,因为这是建模过滤的正确方法,所以你不会得到轻率的结果。

B、选择相关性,因为比较容易,知道哪个方向是导数的计算方向。

C、都可以。

D、因为我可以写一个for循环它会计算导数。

这是一个很困难的问题。答案是B或者C。

只要你知道发生了什么,你可以做任何你想做的事,当这种情况下就是C。

所以我认为当你做梯度过滤时,做相关性可能对你更好。

顺便说一下,在过去,我们在Matlab中需要明确地调用相关或卷积。

现在我们倾向于使用imfilter,正如我们之前讨论过的。imfilter过滤器默认做相关。


——学会编写自己的代码,才能练出真功夫。

这篇关于6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757967

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min