6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4

2024-02-29 07:18

本文主要是介绍6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

索贝尔算子(Sobel)

Matlab梯度(Sobel)实战


索贝尔算子(Sobel

人们其实做导数和边的时间已经很长了。最经典的是Sobel运算,它是以一个叫索贝尔的人的名字命名的。

Sobel运算就像我给你们看的上面的图片一样。但不是 \frac{1}{2} 和 -\frac{1}{2},它很奇怪的是它在乘以\frac{1}{8}

可以看到,它不仅是-2 +2 ,然后除以4得到相同的值。如图:

但它在我上面的行上也有-1  +1 ,在我下面的行上也有-1  +1 。如图:

(还记得我们之前说过的吗?我们假设我们的图像是局部的这种平滑,它们的变化相似吗?)

这里的想法:如果我要计算一个像素点的导数,我不会只看左边,右边,还要附近。

然后要使它标准化,你需要把它除以8。

MATLAB有一个内建函数叫做imgradientxy。他们说,我们可以用这个函数来计算梯度吗?

因为这是一个更高级的问题集的一部分而且他们已经做了梯度,我说当然。

突然间,人们有了各种各样的问题。原因是,如果你查imgradientxy,它会告诉你它默认应用了Sobel运算。

这是Sobel运算。看起来不错,但你知道吗? 它不除以8。(也就是不标准化)

所以他们所有的梯度被缩放了8倍,它把整个班级都搞砸了。

现在我们告诉他们你可以使用imgradientxy,但你最好除以8。

顺便说一下,y也在这里,在这里y是正向上的。如图:

那么Sobel梯度就是由Sx和Sy的应用组成来得到这些值。

大小就是各自的平方和的平方根。

我应该说gx是Sx的应用,gy是Sy的应用。如图:

大小就是我们之前做的。

这是arctan2,为了得到梯度,我们讨论过的atan2。如图:

这是一个古老的例子。

我知道它很古老,因为它是X窗口,甚至比你们大多数人出生的时间还要早。

这里是一个梯度,所以你只需应用Sobel算子,取平方和的平方根。

顺便说一下,你可以取临界值。如图:

你会注意到两件事。

一,它不是一个可怕的边缘图像;

二,它不是一个伟大的边缘图像;

我们可以在一定程度上要做到这一点。

Matlab梯度(Sobel)实战

有很多著名的边缘运算。

这是Sobel、Prewitt和Roberts,你们可以看到他们用了不同的方法。

实际上,在Matlab中有一个很酷的小函数叫做fspecial,它会根据你的名字为你做过滤器,

可能只在imfilter工具箱里或者基本的Matlab中。但是你可以给它高斯函数,你可以给它一些东西,你可以给它Sobel。

>> filt = fspecial('sobel');

如果你给它Sobel,它会做的是它会回复这个运算。如图:

在这种情况下,顺便说一下,在Matlab中把所有东西都翻倍,如果我把它应用到某个图像上。如下:

>> outim = imfilter(double(im), filt);

这是我的图像的两倍,我应用滤镜,然后我显示它,我使用一个灰色的颜色。如下:

>> imagesc(outim);
>> colormap gray;

运行代码,如下:

你可以看到它给了我一个梯度图像,这是 y 梯度,它还会返回 x 梯度。

小测验:

最好使用梯度计算是哪一种?

A、选择卷积,因为这是建模过滤的正确方法,所以你不会得到轻率的结果。

B、选择相关性,因为比较容易,知道哪个方向是导数的计算方向。

C、都可以。

D、因为我可以写一个for循环它会计算导数。

这是一个很困难的问题。答案是B或者C。

只要你知道发生了什么,你可以做任何你想做的事,当这种情况下就是C。

所以我认为当你做梯度过滤时,做相关性可能对你更好。

顺便说一下,在过去,我们在Matlab中需要明确地调用相关或卷积。

现在我们倾向于使用imfilter,正如我们之前讨论过的。imfilter过滤器默认做相关。


——学会编写自己的代码,才能练出真功夫。

这篇关于6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757967

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.