6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4

2024-02-29 07:18

本文主要是介绍6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

索贝尔算子(Sobel)

Matlab梯度(Sobel)实战


索贝尔算子(Sobel

人们其实做导数和边的时间已经很长了。最经典的是Sobel运算,它是以一个叫索贝尔的人的名字命名的。

Sobel运算就像我给你们看的上面的图片一样。但不是 \frac{1}{2} 和 -\frac{1}{2},它很奇怪的是它在乘以\frac{1}{8}

可以看到,它不仅是-2 +2 ,然后除以4得到相同的值。如图:

但它在我上面的行上也有-1  +1 ,在我下面的行上也有-1  +1 。如图:

(还记得我们之前说过的吗?我们假设我们的图像是局部的这种平滑,它们的变化相似吗?)

这里的想法:如果我要计算一个像素点的导数,我不会只看左边,右边,还要附近。

然后要使它标准化,你需要把它除以8。

MATLAB有一个内建函数叫做imgradientxy。他们说,我们可以用这个函数来计算梯度吗?

因为这是一个更高级的问题集的一部分而且他们已经做了梯度,我说当然。

突然间,人们有了各种各样的问题。原因是,如果你查imgradientxy,它会告诉你它默认应用了Sobel运算。

这是Sobel运算。看起来不错,但你知道吗? 它不除以8。(也就是不标准化)

所以他们所有的梯度被缩放了8倍,它把整个班级都搞砸了。

现在我们告诉他们你可以使用imgradientxy,但你最好除以8。

顺便说一下,y也在这里,在这里y是正向上的。如图:

那么Sobel梯度就是由Sx和Sy的应用组成来得到这些值。

大小就是各自的平方和的平方根。

我应该说gx是Sx的应用,gy是Sy的应用。如图:

大小就是我们之前做的。

这是arctan2,为了得到梯度,我们讨论过的atan2。如图:

这是一个古老的例子。

我知道它很古老,因为它是X窗口,甚至比你们大多数人出生的时间还要早。

这里是一个梯度,所以你只需应用Sobel算子,取平方和的平方根。

顺便说一下,你可以取临界值。如图:

你会注意到两件事。

一,它不是一个可怕的边缘图像;

二,它不是一个伟大的边缘图像;

我们可以在一定程度上要做到这一点。

Matlab梯度(Sobel)实战

有很多著名的边缘运算。

这是Sobel、Prewitt和Roberts,你们可以看到他们用了不同的方法。

实际上,在Matlab中有一个很酷的小函数叫做fspecial,它会根据你的名字为你做过滤器,

可能只在imfilter工具箱里或者基本的Matlab中。但是你可以给它高斯函数,你可以给它一些东西,你可以给它Sobel。

>> filt = fspecial('sobel');

如果你给它Sobel,它会做的是它会回复这个运算。如图:

在这种情况下,顺便说一下,在Matlab中把所有东西都翻倍,如果我把它应用到某个图像上。如下:

>> outim = imfilter(double(im), filt);

这是我的图像的两倍,我应用滤镜,然后我显示它,我使用一个灰色的颜色。如下:

>> imagesc(outim);
>> colormap gray;

运行代码,如下:

你可以看到它给了我一个梯度图像,这是 y 梯度,它还会返回 x 梯度。

小测验:

最好使用梯度计算是哪一种?

A、选择卷积,因为这是建模过滤的正确方法,所以你不会得到轻率的结果。

B、选择相关性,因为比较容易,知道哪个方向是导数的计算方向。

C、都可以。

D、因为我可以写一个for循环它会计算导数。

这是一个很困难的问题。答案是B或者C。

只要你知道发生了什么,你可以做任何你想做的事,当这种情况下就是C。

所以我认为当你做梯度过滤时,做相关性可能对你更好。

顺便说一下,在过去,我们在Matlab中需要明确地调用相关或卷积。

现在我们倾向于使用imfilter,正如我们之前讨论过的。imfilter过滤器默认做相关。


——学会编写自己的代码,才能练出真功夫。

这篇关于6.边缘检测:梯度——索贝尔算子(Sobel)、Matlab梯度(Sobel)实战_4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757967

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务