本文主要是介绍PyTorch随笔 - 获取TensorRT(TRT)模型输入和输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
获取TensorRT(TRT)模型输入和输出,用于创建TRT的模型服务使用,具体参考脚本check_trt_script.py,如下:
- 脚本输入:TRT的模型路径和输入图像尺寸
- 脚本输出:模型的输入和输出结点信息,同时验证TRT模型是否可用
#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2021. All rights reserved.
Created by C. L. Wang on 16.9.21
"""import argparseimport numpy as npdef check_trt(model_path, image_size):"""检查TRT模型"""import pycuda.driver as cudaimport tensorrt as trt# 必须导入包,import pycuda.autoinit,否则报错import pycuda.autoinitprint('[Info] model_path: {}'.format(model_path))img_shape = (1, 3, image_size, image_size)print('[Info] img_shape: {}'.format(img_shape))trt_logger = trt.Logger(trt.Logger.WARNING)trt_path = model_path # TRT模型路径with open(trt_path, 'rb') as f, trt.Runtime(trt_logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())for binding in engine:binding_idx = engine.get_binding_index(binding)size = engine.get_binding_shape(binding_idx)dtype = trt.nptype(engine.get_binding_dtype(binding))print("[Info] binding: {}, binding_idx: {}, size: {}, dtype: {}".format(binding, binding_idx, size, dtype))input_image = np.random.randn(*img_shape).astype(np.float32) # 图像尺寸input_image = np.ascontiguousarray(input_image)print('[Info] input_image: {}'.format(input_image.shape))with engine.create_execution_context() as context:stream = cuda.Stream()bindings = [0] * len(engine)for binding in engine:idx = engine.get_binding_index(binding)if engine.binding_is_input(idx):input_memory = cuda.mem_alloc(input_image.nbytes)bindings[idx] = int(input_memory)cuda.memcpy_htod_async(input_memory, input_image, stream)else:dtype = trt.nptype(engine.get_binding_dtype(binding))shape = context.get_binding_shape(idx)output_buffer = np.empty(shape, dtype=dtype)output_buffer = np.ascontiguousarray(output_buffer)output_memory = cuda.mem_alloc(output_buffer.nbytes)bindings[idx] = int(output_memory)context.execute_async_v2(bindings, stream.handle)stream.synchronize()cuda.memcpy_dtoh(output_buffer, output_memory)print("[Info] output_buffer: {}".format(output_buffer))def parse_args():"""处理脚本参数"""parser = argparse.ArgumentParser(description='检查TRT模型')parser.add_argument('-m', dest='model_path', required=True, help='TRT模型路径', type=str)parser.add_argument('-s', dest='image_size', required=False, help='图像尺寸,如336', type=int, default=336)args = parser.parse_args()arg_model_path = args.model_pathprint("[Info] 模型路径: {}".format(arg_model_path))arg_image_size = args.image_sizeprint("[Info] image_size: {}".format(arg_image_size))return arg_model_path, arg_image_sizedef main():arg_model_path, arg_image_size = parse_args()check_trt(arg_model_path, arg_image_size) # 检查TRT模型if __name__ == '__main__':main()
注意:必须导入包,import pycuda.autoinit
,否则cuda.Stream()
报错,如下:
输出信息如下:
[Info] 模型路径: ../mydata/trt_models/model_best_c2_20210915_cuda.trt
[Info] image_size: 336
[Info] model_path: ../mydata/trt_models/model_best_c2_20210915_cuda.trt
[Info] img_shape: (1, 3, 336, 336)
[Info] binding: input_0, binding_idx: 0, size: (1, 3, 336, 336), dtype: <class 'numpy.float32'>
[Info] binding: output_0, binding_idx: 1, size: (1, 2), dtype: <class 'numpy.float32'>
[Info] input_image: (1, 3, 336, 336)
[Info] output_buffer: [[ 0.23275298 -0.2184143 ]]
有效信息为:
- 输入结点
binding: input_0
,输入尺寸size: (1, 3, 336, 336)
,输入类型dtype: <class 'numpy.float32'>
- 输出结果
binding: output_0
,输出尺寸size: (1, 2)
,输出类型dtype: <class 'numpy.float32'>
相应的json文件如下:
{"model_path": "model_best_c2_20210915_cuda.trt","model_format": "trt","quant_type": "FP32","gpu_index": 0,"inputs": {"input_0": {"shapes": [1,3,336,336],"type": "FP32"}},"outputs": {"output_0": {"shapes": [1,2],"type": "FP32"}}
}
这篇关于PyTorch随笔 - 获取TensorRT(TRT)模型输入和输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!