python|闲谈2048小游戏和数组的旋转及翻转和转置

2024-02-28 18:36

本文主要是介绍python|闲谈2048小游戏和数组的旋转及翻转和转置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

2048

生成数组

n阶方阵

方阵旋转

顺时针旋转

逆时针旋转

mxn矩阵

矩阵旋转

测试代码

测试结果

翻转和转置


2048

《2048》是一款比较流行​的数字游戏​,最早于2014年3月20日发行。原版2048由Gabriele Cirulli首先在GitHub上发布,后被移植到各个平台,并且衍生出不计其数的版本。但在网上看到,居说它也不算是原创,是基于《1024》和《小3传奇》的玩法开发而成的;还有一说,它来源于另一款游戏《Threes!》,由Asher Vollmer和Greg Wohlwend合作开发,于2014年2月6日在App Store上架。

2048游戏规则很简单,游戏开始时在4x4的方格中随机出现数字2,每次可以选择上下左右其中一个方向去滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢外,相邻的相同数字在靠拢时会相加,系统也会在空白的格子里随机增加一个数字2或4。玩家要想办法在这16格范围中,不断上下左右滑动相加数字,从而凑出“2048”这个数字方块。

实际上,这个游戏就是在操作一个4x4的二维数组,数组的元素只要1-11就行了,因为2的11次方就是2048。同样,相邻相同数字的累加就变成了相邻相同指数的递增1。

在编写这个2048游戏前,先来谈谈4x4数组的操作,对python来说虽然也有数组,但通常会用列表来操作。以下就在IDLE shell上流水账操作:

生成数组

16个数字的列表推导式:

>>> [i for i in range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

用*解包更pythonic:

>>> [*range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

分割成4x4二维列表:

>>> [[*range(16)][i*4:i*4+4] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

只是数列如此写法可能更好:

>>> [[*range(i*4,i*4+4)] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

全0列表:

>>> [[0]*4 for _ in range(4)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

n阶方阵

从4阶方阵扩展到n阶:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> matrix(4)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> matrix(5)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]
>>> matrix(6)
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35]]

随机生成数字1或2,比例为3:1:

>>> from random import sample as rnd
>>> rnd([1,1,1,2],1)
[1]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)

随机产生1或者2个“1”,比例为2:1:

>>> from random import sample as rnd
>>> x = 4
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
x = 5
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

方阵旋转

numpy有现成的函数rot90(),表示顺时针旋转数组90度。

>>> import numpy as np
>>> np.array(range(16))
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
>>> np.array([[*range(i*4,i*4+4)] for i in range(4)])
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> array = np.array([[*range(i*4,i*4+4)] for i in range(4)])

逆时针旋转,参数k为正数:

>>> np.rot90(array)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])
>>> np.rot90(array, k=2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=3)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])

顺时针旋转,参数k为负数:

>>> np.rot90(array, k=-1)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])
>>> np.rot90(array, k=-2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=-3)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])

不使用numpy,只用列表推导式也能实现旋转:

顺时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> mat4 = matrix(4)
>>> mat4
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> [[mat[len(mat[0])-j-1][i] for j in range(len(mat[0]))] for i in range(len(mat))]
[[12, 8, 4, 0], [13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3]]

写一个模拟np.array的__repr__方法来检测旋转效果:

class List():# 仅支持二维数组的展示def __init__(self, lst):self.x = lstdef __repr__(self):n = len(str(max(sum(self.x,[]))))res = []for mat in self.x:res.append(', '.join(f'{x:>{n}}' for x in mat))return '],\n\t['.join(res).join(['Array([ [','] ])'])

检测结果如下:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> mat4 =matrix(4)
>>> List(mat4)
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(mat4))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate(rotate(mat4)))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(mat4))))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate(rotate(rotate(rotate(mat4)))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])

结果符合预期,旋转4次恢复原样;同样更高阶方阵也符合:

>>> List(matrix(5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])
>>> List(rotate(matrix(5)))
Array([ [20, 15, 10,  5,  0],
    [21, 16, 11,  6,  1],
    [22, 17, 12,  7,  2],
    [23, 18, 13,  8,  3],
    [24, 19, 14,  9,  4] ])

逆时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(rotate2(matrix(4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate2(rotate2(matrix(4))))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(rotate2(matrix(4)))))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(rotate2(matrix(4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate2(matrix(5)))
Array([ [ 4,  9, 14, 19, 24],
    [ 3,  8, 13, 18, 23],
    [ 2,  7, 12, 17, 22],
    [ 1,  6, 11, 16, 21],
    [ 0,  5, 10, 15, 20] ])
>>> List(rotate2(rotate2(matrix(5))))
Array([ [24, 23, 22, 21, 20],
    [19, 18, 17, 16, 15],
    [14, 13, 12, 11, 10],
    [ 9,  8,  7,  6,  5],
    [ 4,  3,  2,  1,  0] ])

mxn矩阵

把方阵拓展到矩阵:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(matrix(5,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15],
    [16, 17, 18, 19] ])
>>> List(matrix(5,5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])

矩阵旋转

rotate顺时针旋转,rotate2逆时针旋转

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(rotate(matrix(3,4)))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(matrix(3,4)))))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate(rotate(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(matrix(3,4)))))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate2(matrix(3,4)))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate(rotate(rotate(rotate(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
List(rotate2(rotate2(rotate2(rotate2(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])

旋转函数还能写成如下形式,只是坐标与range参数的互调形式:

>>> rotate = lambda m: [[m[j][i] for j in range(len(m)-1,-1,-1)] for i in range(len(m[0]))]
>>> rotate2 = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0])-1,-1,-1)]

lambda匿名函数虽然很简洁,但没有普通函数易懂,我们把lambda函数改成模拟np.rot90()的普通函数rotate(matrix, k=1),其中参数k为90度的倍数,正数顺时针旋转,负数则逆时针旋转:

def rotate(matrix, k=1):rows = len(matrix)cols = len(matrix[0])res = [[0]*rows for _ in range(cols)]k %= 4if k==1:for i in range(rows):for j in range(cols):res[j][rows-i-1] = matrix[i][j]elif k==2:res = [[0]*cols for _ in range(rows)]for i in range(rows):for j in range(cols):res[rows-i-1][cols-j-1] = matrix[i][j]elif k==3:for i in range(rows):for j in range(cols):res[cols-j-1][i] = matrix[i][j]else:return matrixreturn res

测试代码

def rotate(matrix, k=1):rows = len(matrix)cols = len(matrix[0])res = [[0]*rows for _ in range(cols)]k %= 4if k==1:for i in range(rows):for j in range(cols):res[j][rows-i-1] = matrix[i][j]elif k==2:res = [[0]*cols for _ in range(rows)]for i in range(rows):for j in range(cols):res[rows-i-1][cols-j-1] = matrix[i][j]elif k==3:for i in range(rows):for j in range(cols):res[cols-j-1][i] = matrix[i][j]else:return matrixreturn resdef show(matrix):n = len(str(max(sum(matrix,[]))))res = []for mat in matrix:res.append(', '.join(f'{x:>{n}}' for x in mat))print('],\n\t['.join(res).join(['Array([ [','] ])']))matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]for i in range(-4,5):show(rotate(matrix(4,4), i))for i in range(-4,5):show(rotate(matrix(5,3), i))

测试结果

Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])

翻转和转置

翻转可以是水平方向和重置方向的:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> flipH = lambda m: [[m[i][len(m[0])-j-1] for j in range(len(m[0]))] for i in range(len(m))]
>>> flipV = lambda m: [[m[len(m)-j-1][i] for i in range(len(m[0]))] for j in range(len(m))]
>>> List(flipH(matrix(4,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12] ])
>>> List(flipV(matrix(4,4)))
Array([ [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])
>>> List(flipH(matrix(3,5)))
Array([ [ 4,  3,  2,  1,  0],
    [ 9,  8,  7,  6,  5],
    [14, 13, 12, 11, 10] ])
>>> List(flipV(matrix(3,5)))
Array([ [10, 11, 12, 13, 14],
    [ 5,  6,  7,  8,  9],
    [ 0,  1,  2,  3,  4] ])
>>> List(flipH(matrix(5,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12],
    [19, 18, 17, 16] ])
>>> List(flipV(matrix(5,4)))
Array([ [16, 17, 18, 19],
    [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])

转置可以看作是翻转和旋转的组合,对方阵来说就是以对角线为轴的翻转:

>>> transpose = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(transpose(matrix(4,4)))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(transpose(transpose(matrix(4,4))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(matrix(4,4)))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(flipH(rotate(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(rotate2(matrix(4,4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(flipV(rotate2(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])

在numpy中,转置由.T属性完成

>>> import numpy as np
>>> arr = np.array(matrix(3,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> arr.T
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
>>> arr = np.array(matrix(4,4))
>>> arr.T
array([[ 0,  4,  8, 12],
       [ 1,  5,  9, 13],
       [ 2,  6, 10, 14],
       [ 3,  7, 11, 15]])
>>> arr.T.T
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> arr = np.array(matrix(5,4))
>>> arr.T
array([[ 0,  4,  8, 12, 16],
       [ 1,  5,  9, 13, 17],
       [ 2,  6, 10, 14, 18],
       [ 3,  7, 11, 15, 19]])


这篇关于python|闲谈2048小游戏和数组的旋转及翻转和转置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756281

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid