python|闲谈2048小游戏和数组的旋转及翻转和转置

2024-02-28 18:36

本文主要是介绍python|闲谈2048小游戏和数组的旋转及翻转和转置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

2048

生成数组

n阶方阵

方阵旋转

顺时针旋转

逆时针旋转

mxn矩阵

矩阵旋转

测试代码

测试结果

翻转和转置


2048

《2048》是一款比较流行​的数字游戏​,最早于2014年3月20日发行。原版2048由Gabriele Cirulli首先在GitHub上发布,后被移植到各个平台,并且衍生出不计其数的版本。但在网上看到,居说它也不算是原创,是基于《1024》和《小3传奇》的玩法开发而成的;还有一说,它来源于另一款游戏《Threes!》,由Asher Vollmer和Greg Wohlwend合作开发,于2014年2月6日在App Store上架。

2048游戏规则很简单,游戏开始时在4x4的方格中随机出现数字2,每次可以选择上下左右其中一个方向去滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢外,相邻的相同数字在靠拢时会相加,系统也会在空白的格子里随机增加一个数字2或4。玩家要想办法在这16格范围中,不断上下左右滑动相加数字,从而凑出“2048”这个数字方块。

实际上,这个游戏就是在操作一个4x4的二维数组,数组的元素只要1-11就行了,因为2的11次方就是2048。同样,相邻相同数字的累加就变成了相邻相同指数的递增1。

在编写这个2048游戏前,先来谈谈4x4数组的操作,对python来说虽然也有数组,但通常会用列表来操作。以下就在IDLE shell上流水账操作:

生成数组

16个数字的列表推导式:

>>> [i for i in range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

用*解包更pythonic:

>>> [*range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

分割成4x4二维列表:

>>> [[*range(16)][i*4:i*4+4] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

只是数列如此写法可能更好:

>>> [[*range(i*4,i*4+4)] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

全0列表:

>>> [[0]*4 for _ in range(4)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

n阶方阵

从4阶方阵扩展到n阶:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> matrix(4)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> matrix(5)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]
>>> matrix(6)
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35]]

随机生成数字1或2,比例为3:1:

>>> from random import sample as rnd
>>> rnd([1,1,1,2],1)
[1]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)

随机产生1或者2个“1”,比例为2:1:

>>> from random import sample as rnd
>>> x = 4
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
x = 5
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

方阵旋转

numpy有现成的函数rot90(),表示顺时针旋转数组90度。

>>> import numpy as np
>>> np.array(range(16))
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
>>> np.array([[*range(i*4,i*4+4)] for i in range(4)])
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> array = np.array([[*range(i*4,i*4+4)] for i in range(4)])

逆时针旋转,参数k为正数:

>>> np.rot90(array)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])
>>> np.rot90(array, k=2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=3)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])

顺时针旋转,参数k为负数:

>>> np.rot90(array, k=-1)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])
>>> np.rot90(array, k=-2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=-3)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])

不使用numpy,只用列表推导式也能实现旋转:

顺时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> mat4 = matrix(4)
>>> mat4
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> [[mat[len(mat[0])-j-1][i] for j in range(len(mat[0]))] for i in range(len(mat))]
[[12, 8, 4, 0], [13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3]]

写一个模拟np.array的__repr__方法来检测旋转效果:

class List():# 仅支持二维数组的展示def __init__(self, lst):self.x = lstdef __repr__(self):n = len(str(max(sum(self.x,[]))))res = []for mat in self.x:res.append(', '.join(f'{x:>{n}}' for x in mat))return '],\n\t['.join(res).join(['Array([ [','] ])'])

检测结果如下:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> mat4 =matrix(4)
>>> List(mat4)
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(mat4))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate(rotate(mat4)))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(mat4))))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate(rotate(rotate(rotate(mat4)))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])

结果符合预期,旋转4次恢复原样;同样更高阶方阵也符合:

>>> List(matrix(5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])
>>> List(rotate(matrix(5)))
Array([ [20, 15, 10,  5,  0],
    [21, 16, 11,  6,  1],
    [22, 17, 12,  7,  2],
    [23, 18, 13,  8,  3],
    [24, 19, 14,  9,  4] ])

逆时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(rotate2(matrix(4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate2(rotate2(matrix(4))))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(rotate2(matrix(4)))))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(rotate2(matrix(4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate2(matrix(5)))
Array([ [ 4,  9, 14, 19, 24],
    [ 3,  8, 13, 18, 23],
    [ 2,  7, 12, 17, 22],
    [ 1,  6, 11, 16, 21],
    [ 0,  5, 10, 15, 20] ])
>>> List(rotate2(rotate2(matrix(5))))
Array([ [24, 23, 22, 21, 20],
    [19, 18, 17, 16, 15],
    [14, 13, 12, 11, 10],
    [ 9,  8,  7,  6,  5],
    [ 4,  3,  2,  1,  0] ])

mxn矩阵

把方阵拓展到矩阵:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(matrix(5,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15],
    [16, 17, 18, 19] ])
>>> List(matrix(5,5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])

矩阵旋转

rotate顺时针旋转,rotate2逆时针旋转

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(rotate(matrix(3,4)))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(matrix(3,4)))))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate(rotate(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(matrix(3,4)))))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate2(matrix(3,4)))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate(rotate(rotate(rotate(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
List(rotate2(rotate2(rotate2(rotate2(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])

旋转函数还能写成如下形式,只是坐标与range参数的互调形式:

>>> rotate = lambda m: [[m[j][i] for j in range(len(m)-1,-1,-1)] for i in range(len(m[0]))]
>>> rotate2 = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0])-1,-1,-1)]

lambda匿名函数虽然很简洁,但没有普通函数易懂,我们把lambda函数改成模拟np.rot90()的普通函数rotate(matrix, k=1),其中参数k为90度的倍数,正数顺时针旋转,负数则逆时针旋转:

def rotate(matrix, k=1):rows = len(matrix)cols = len(matrix[0])res = [[0]*rows for _ in range(cols)]k %= 4if k==1:for i in range(rows):for j in range(cols):res[j][rows-i-1] = matrix[i][j]elif k==2:res = [[0]*cols for _ in range(rows)]for i in range(rows):for j in range(cols):res[rows-i-1][cols-j-1] = matrix[i][j]elif k==3:for i in range(rows):for j in range(cols):res[cols-j-1][i] = matrix[i][j]else:return matrixreturn res

测试代码

def rotate(matrix, k=1):rows = len(matrix)cols = len(matrix[0])res = [[0]*rows for _ in range(cols)]k %= 4if k==1:for i in range(rows):for j in range(cols):res[j][rows-i-1] = matrix[i][j]elif k==2:res = [[0]*cols for _ in range(rows)]for i in range(rows):for j in range(cols):res[rows-i-1][cols-j-1] = matrix[i][j]elif k==3:for i in range(rows):for j in range(cols):res[cols-j-1][i] = matrix[i][j]else:return matrixreturn resdef show(matrix):n = len(str(max(sum(matrix,[]))))res = []for mat in matrix:res.append(', '.join(f'{x:>{n}}' for x in mat))print('],\n\t['.join(res).join(['Array([ [','] ])']))matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]for i in range(-4,5):show(rotate(matrix(4,4), i))for i in range(-4,5):show(rotate(matrix(5,3), i))

测试结果

Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])

翻转和转置

翻转可以是水平方向和重置方向的:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> flipH = lambda m: [[m[i][len(m[0])-j-1] for j in range(len(m[0]))] for i in range(len(m))]
>>> flipV = lambda m: [[m[len(m)-j-1][i] for i in range(len(m[0]))] for j in range(len(m))]
>>> List(flipH(matrix(4,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12] ])
>>> List(flipV(matrix(4,4)))
Array([ [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])
>>> List(flipH(matrix(3,5)))
Array([ [ 4,  3,  2,  1,  0],
    [ 9,  8,  7,  6,  5],
    [14, 13, 12, 11, 10] ])
>>> List(flipV(matrix(3,5)))
Array([ [10, 11, 12, 13, 14],
    [ 5,  6,  7,  8,  9],
    [ 0,  1,  2,  3,  4] ])
>>> List(flipH(matrix(5,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12],
    [19, 18, 17, 16] ])
>>> List(flipV(matrix(5,4)))
Array([ [16, 17, 18, 19],
    [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])

转置可以看作是翻转和旋转的组合,对方阵来说就是以对角线为轴的翻转:

>>> transpose = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(transpose(matrix(4,4)))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(transpose(transpose(matrix(4,4))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(matrix(4,4)))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(flipH(rotate(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(rotate2(matrix(4,4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(flipV(rotate2(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])

在numpy中,转置由.T属性完成

>>> import numpy as np
>>> arr = np.array(matrix(3,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> arr.T
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
>>> arr = np.array(matrix(4,4))
>>> arr.T
array([[ 0,  4,  8, 12],
       [ 1,  5,  9, 13],
       [ 2,  6, 10, 14],
       [ 3,  7, 11, 15]])
>>> arr.T.T
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> arr = np.array(matrix(5,4))
>>> arr.T
array([[ 0,  4,  8, 12, 16],
       [ 1,  5,  9, 13, 17],
       [ 2,  6, 10, 14, 18],
       [ 3,  7, 11, 15, 19]])


这篇关于python|闲谈2048小游戏和数组的旋转及翻转和转置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756281

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相