数据结构之红黑树(二)——插入操作

2024-02-28 14:58

本文主要是介绍数据结构之红黑树(二)——插入操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

插入或删除操作,都有可能改变红黑树的平衡性,利用颜色变化与旋转这两大法宝就可应对所有情况,将不平衡的红黑树变为平衡的红黑树。

在进行颜色变化或旋转的时候,往往要涉及祖孙三代节点:X表示操作的基准节点,P代表X的父节点,G代表X的父节点的父节点。

我们先来大体预览一下插入的过程:

1、沿着树查找插入点,如果查找过程中发现某个黑色节点的两个子节点都是红色,则执行一次颜色变换(父节点变为红色,而两个红色子节点变为黑色)。

2、第1步中,不会改变子树的黑色高度,但是可能会出现颜色冲突(红-红颜色冲突),执行一次或两次旋转即可解决。设红色子节点为X,红色父节点为P,旋转次数由X是G的内侧子孙还是外侧子孙决定。

3、找到插入点之后,设X为新插入的节点。如果P是黑色的,则不需要做任何改变,插入完成。

4、如果P是红色的,则发生了红-红颜色冲突,需要做两次颜色变化,如果X为G的外侧子孙,再进行一次旋转;如果X为G的内侧子孙,再进行两次旋转。最终都可使树变为平衡的红黑树。

现在看不懂没关系,为何要这么做,我们接下来慢慢分析。

 

第1步与第2步看似与插入新节点没关系,其实为了给新节点的插入扫清道路,到后面插入新节点时就会体现出来。

先来看第1步的详细过程:


上图中,查找到P点,发现它的两个子节点都是红色,则进行颜色变换(如果P是根,则保持黑色不变)。这种变换并不会改变从根节点经P到叶节点或者空节点的路径上的黑色节点总数,即不会改变其黑色高度。将P、X1、X2看做三角形的三个顶点,颜色变换之前,经过此三角形时会增加一个黑色节点,颜色变换之后,P变成了红色,X1、X2变成了黑色,不论是经过X1还是经过X2,还是会增加一个黑色节点。

如果P的父节点是黑色,则不会出现任何问题,但是,如果P的父节点也是红色,就会发生红-红颜色冲突,需要通过旋转来修正。发生颜色冲突时有两种情况需要区别对待。

注意,这时候我们选定红-红颜色冲突父子节点中的子节点作为基准节点,即X。如果X在P的一侧与P在G的一侧相同,X即为G的外侧子孙,反之,则为内侧子孙

情况1:X为外侧子孙节点。


上图中,表示的是颜色变换之后的情况,12跟25节点发生了颜色冲突,12为50的外侧子孙。

在这种情况需要采取三步操作:

1、改变G的颜色;

2、改变P的颜色

3、以G为中心进行向X上升的方向旋转(本例中是右旋)。


奇迹发生了,树突然之间平衡了,而且是符合红黑规则的。

需要注意的是,在本例中,由于25是50的左子节点,进行的是右旋操作,加入它是右子节点,则需要进行左旋操作。无论是左旋还是右旋,都是向着X上升的方向旋转

 

情况2:X为内侧子孙节点。

修正这种情况比较复杂一点,如果我们采取跟内侧子孙一样的做法,X不会上移而是发生横向移动,使树变得更加不平衡。因此需要一种不同的方法来解决。

我们先要用一次旋转让X成为外侧子孙,然后再用一次旋转使树平衡。

这种情况需要进行四步操作:

1、改变G的颜色;

2、改变X的颜色;

3、以P为中心向X上升的方向旋转;

4、以G为中心向X上升的方向旋转。

 

 

至此,前期工作已经完成,下面进行新节点的插入。在插入环节,我们以新节点为基准点,即X。

在前面已经说过,我们总是默认新节点为红色。那么,找到插入点的时候,会有两种情况,一种是X的父节点为P为黑色,直接插入即可(因为插入一个红色新节点既不会影响树的黑色高度,也不会发生颜色冲突);另一种情况是X的父节点P也为红色,插入后会发生红-红颜色冲突,需要通过颜色变换与旋转来修正。

发生颜色冲突的时候,根据X是内侧子孙还是外侧子孙分别对待,处理方法与上面提到的方法类似。

外侧子孙:

 

内侧子孙:

 

下面我们来讨论一下,是否还有其他情况。

假如X有一个兄弟节点S,即P的另一个子节点,会使任何需要的旋转更加复杂。如果P为黑色,无论X有没有兄弟节点,都不需要旋转;如果P为红色,则插入之前,P不可能有一个单独的黑色子节点,因为这样会使S和空子节点的黑色高度不一样。综上,插入新节点之后,不会出现X存在兄弟节点而且需要旋转修正的情况。

假如P有一个兄弟节点,即X的叔节点U,也会使任何需要的旋转更加复杂。如果P为黑色,X插入后不要要做任何旋转;如果P为红色,则U必须为红色,否则,G到P的黑色高度与G到U的黑色高度就不同了。但是,有两个红色子节点的父节点在插入之前我们已经处理掉了,所以这种情况也不会存在。综上,插入新节点之后,不会出现P存在兄弟节点且需要旋转修正的情况。

到现在,就明白为什么要在寻找插入点的过程中,把有两个红色子节点的父节点的颜色变换掉,一方面是为了使树更加平衡,另一方面是大大简化了插入后的旋转操作。

这篇关于数据结构之红黑树(二)——插入操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755823

相关文章

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4