部分卷积与FasterNet模型详解

2024-02-28 11:12

本文主要是介绍部分卷积与FasterNet模型详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

论文原址:2023CVPR:https://arxiv.org/pdf/2303.03667.pdf

代码仓库:GitHub - JierunChen/FasterNet: [CVPR 2023] Code for PConv and FasterNet

为了设计快速神经网络,很多工作都集中于减少浮点运算(FLOPs)的数量上面,但是作者发现FLOPs的减少不一定会带来延迟的类似程度的减少。这源于每秒低浮点运算(FLOPs)的效率低下,而这源于FLOPs的运算符频繁访问内存,尤其是深度卷积,因此,提出了Partial Convolution,通过同时减少冗余计算和内存访问可以更有效地提取空间特征。并以此提出了FasterNet。

部分卷积

DWConv是Conv的一种流行变体,已被广泛用作许多神经网络的关键构建块,虽然DWConv(通常后跟逐点卷积或PWConv)可以有效地减少FLOPs,但不能简单地用于取代常规Conv,因为它会导致严重的精度下降。

在计算效率方面,PConv的FLOPs(浮点运算数)仅为常规卷积的一小部分,具体来说,当部分比例(partial ratio)为1/4时,FLOPs仅为常规卷积的1/16。内存访问量也显著减少,尤其在部分比例为1/4时,仅为常规卷积的1/4。

class PartialConv(nn.Module):def __init__(self, dim, n_div=4, kernel_size=3, forward='split_cat'):"""PartialConv 模块Args:dim (int): 输入张量的通道数。n_div (int): 分割通道数的分母,用于确定部分卷积的通道数。forward (str): 使用的前向传播方法,可选 'slicing' 或 'split_cat'。"""super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, kernel_size, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return x

在代码当中设计了两种前向传播方式:

"forward_slicing" 主要用于推理阶段,在推理时,复制输入张量,然后仅在部分通道上进行卷积操作,保持其余通道不变。避免了对原始输入张量的修改,使得原始输入张量可以在后续的计算中被保留,如用于残差连接。

"forward_split_cat" 可用于训练和推理阶段, 在训练和推理时,该方法将输入张量分割成两部分,对第一部分进行卷积操作,然后将结果与原始未修改的第二部分拼接回来。对于训练过程,通过在部分通道上进行卷积,模型可以学到更适应当前任务的特征。同时,保留了原始未修改的通道,以用于后续的计算。

FasterNet作为Backbone

它分为四个阶段(Stage),每个阶段包含一系列的FasterNet块(FasterNet Block),并在每个阶段之前有一个嵌入(Embedding)或合并(Merging)层。最后的三个层用于特征分类。

在每个FasterNet块内部,采用了Partial Convolution (PConv) 操作,其后接两个Pointwise Convolution (PWConv) 操作。这一结构有效利用了所有通道的信息,形成一个T形的卷积结构,使得模型更加关注中心位置的特征。在PConv操作后,只在中间层之后加入归一化和激活层,以保持特征的多样性和降低计算延迟。

对于激活函数的选择,根据计算预算的大小,选择了GELU(对于较小的FasterNet变体)和ReLU(对于较大的FasterNet变体)。最后三层,即全局平均池化、Conv 1x1和全连接层,用于进行特征变换和分类。

为了满足不同的计算预算,提供了四个不同大小的FasterNet变体,分别为FasterNet-T0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。这些变体在深度和宽度上略有差异,但整体架构相似。详细的架构规格可在附录中找到。

下面的网络复现是参考的原作者以及下面paddle版本的实现:

"""
Paper address: <https://arxiv.org/pdf/2303.03667.pdf>
Reference from: https://github.com/JierunChen/FasterNet/blob/master/models/fasternet.py
Blog records: https://blog.csdn.net/m0_62919535/article/details/136334105
"""
import torch
import torch.nn as nn
from pyzjr.Models.bricks import DropPath__all__=["FasterNet", "FasterNetBlock", "fasternet_t0", "fasternet_t1", "fasternet_t2","fasternet_s", "fasternet_m", "fasternet_l"]class PartialConv(nn.Module):def __init__(self, dim, n_div=4, kernel_size=3, forward='split_cat'):"""PartialConv 模块Args:dim (int): 输入张量的通道数。n_div (int): 分割通道数的分母,用于确定部分卷积的通道数。forward (str): 使用的前向传播方法,可选 'slicing' 或 'split_cat'。"""super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, kernel_size, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass FasterNetBlock(nn.Module):def __init__(self, dim, expand_ratio=2, act_layer=nn.ReLU, drop_path_rate=0.0, forward='split_cat'):super().__init__()self.pconv = PartialConv(dim, forward=forward)self.conv1 = nn.Conv2d(dim, dim * expand_ratio, 1, bias=False)self.bn = nn.BatchNorm2d(dim * expand_ratio)self.act_layer = act_layer()self.conv2 = nn.Conv2d(dim * expand_ratio, dim, 1, bias=False)self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()def forward(self, x):residual = xx = self.pconv(x)x = self.conv1(x)x = self.bn(x)x = self.act_layer(x)x = self.conv2(x)x = residual + self.drop_path(x)return xclass FasterNet(nn.Module):def __init__(self, in_channel=3, embed_dim=40, act_layer=None,num_classes=1000, depths=None, drop_rate=0.0):super().__init__()# Embeddingself.stem = nn.Sequential(nn.Conv2d(in_channel, embed_dim, 4, stride=4, bias=False),nn.BatchNorm2d(embed_dim),act_layer())drop_path_list = [x.item() for x in torch.linspace(0, drop_rate, sum(depths))]self.feature = []embed_dim = embed_dimfor idx, depth in enumerate(depths):self.feature.append(nn.Sequential(*[FasterNetBlock(embed_dim, act_layer=act_layer, drop_path_rate=drop_path_list[sum(depths[:idx]) + i]) for i in range(depth)]))if idx < len(depths) - 1:# Mergingself.feature.append(nn.Sequential(nn.Conv2d(embed_dim, embed_dim * 2, 2, stride=2, bias=False),nn.BatchNorm2d(embed_dim * 2),act_layer()))embed_dim = embed_dim * 2self.feature = nn.Sequential(*self.feature)self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv1 = nn.Conv2d(embed_dim, 1280, 1, bias=False)self.act_layer = act_layer()self.fc = nn.Linear(1280, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):x = self.stem(x)x = self.feature(x)x = self.avg_pool(x)x = self.conv1(x)x = self.act_layer(x)x = self.fc(x.flatten(1))return xdef fasternet_t0(num_classes, drop_path_rate=0.0):return FasterNet(embed_dim=40,act_layer=nn.GELU,num_classes=num_classes,depths=[1, 2, 8, 2],drop_rate=drop_path_rate)def fasternet_t1(num_classes, drop_path_rate=0.02):return FasterNet(embed_dim=64,act_layer=nn.GELU,num_classes=num_classes,depths=[1, 2, 8, 2],drop_rate=drop_path_rate)def fasternet_t2(num_classes, drop_path_rate = 0.05):return FasterNet(embed_dim=96,act_layer=nn.ReLU,num_classes=num_classes,depths=[1, 2, 8, 2],drop_rate=drop_path_rate)def fasternet_s(num_classes, drop_path_rate = 0.03):return FasterNet(embed_dim=128,act_layer=nn.ReLU,num_classes=num_classes,depths=[1, 2, 13, 2],drop_rate=drop_path_rate)def fasternet_m(num_classes, drop_path_rate = 0.05):return FasterNet(embed_dim=144,act_layer=nn.ReLU,num_classes=num_classes,depths=[3, 4, 18, 3],drop_rate=drop_path_rate)def fasternet_l(num_classes, drop_path_rate = 0.05):return FasterNet(embed_dim=192,act_layer=nn.ReLU,num_classes=num_classes,depths=[3, 4, 18, 3],drop_rate=drop_path_rate)if __name__=="__main__":import torchsummarydevice = 'cuda' if torch.cuda.is_available() else 'cpu'input = torch.ones(2, 3, 224, 224).to(device)net = fasternet_t2(num_classes=4)net = net.to(device)out = net(input)print(out)print(out.shape)torchsummary.summary(net, input_size=(3, 224, 224))# t0 Total params: 2,629,624 Estimated Total Size (MB): 57.70# t1 Total params: 6,319,492 Estimated Total Size (MB): 100.02# t2 Total params: 13,707,012 Estimated Total Size (MB): 165.87# s Total params: 29,905,156 Estimated Total Size (MB): 304.56# m Total params: 52,245,588 Estimated Total Size (MB): 568.01# l Total params: 92,189,316 Estimated Total Size (MB): 843.09

参考文章

CVPR 2023 | 最新主干FasterNet!远超MobileViT等模型-CSDN博客

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络-CSDN博客

FasterNet实战:使用FasterNet实现图像分类任务(二)_fasternet代码实现-CSDN博客

这篇关于部分卷积与FasterNet模型详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755341

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)