部分卷积与FasterNet模型详解

2024-02-28 11:12

本文主要是介绍部分卷积与FasterNet模型详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

论文原址:2023CVPR:https://arxiv.org/pdf/2303.03667.pdf

代码仓库:GitHub - JierunChen/FasterNet: [CVPR 2023] Code for PConv and FasterNet

为了设计快速神经网络,很多工作都集中于减少浮点运算(FLOPs)的数量上面,但是作者发现FLOPs的减少不一定会带来延迟的类似程度的减少。这源于每秒低浮点运算(FLOPs)的效率低下,而这源于FLOPs的运算符频繁访问内存,尤其是深度卷积,因此,提出了Partial Convolution,通过同时减少冗余计算和内存访问可以更有效地提取空间特征。并以此提出了FasterNet。

部分卷积

DWConv是Conv的一种流行变体,已被广泛用作许多神经网络的关键构建块,虽然DWConv(通常后跟逐点卷积或PWConv)可以有效地减少FLOPs,但不能简单地用于取代常规Conv,因为它会导致严重的精度下降。

在计算效率方面,PConv的FLOPs(浮点运算数)仅为常规卷积的一小部分,具体来说,当部分比例(partial ratio)为1/4时,FLOPs仅为常规卷积的1/16。内存访问量也显著减少,尤其在部分比例为1/4时,仅为常规卷积的1/4。

class PartialConv(nn.Module):def __init__(self, dim, n_div=4, kernel_size=3, forward='split_cat'):"""PartialConv 模块Args:dim (int): 输入张量的通道数。n_div (int): 分割通道数的分母,用于确定部分卷积的通道数。forward (str): 使用的前向传播方法,可选 'slicing' 或 'split_cat'。"""super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, kernel_size, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return x

在代码当中设计了两种前向传播方式:

"forward_slicing" 主要用于推理阶段,在推理时,复制输入张量,然后仅在部分通道上进行卷积操作,保持其余通道不变。避免了对原始输入张量的修改,使得原始输入张量可以在后续的计算中被保留,如用于残差连接。

"forward_split_cat" 可用于训练和推理阶段, 在训练和推理时,该方法将输入张量分割成两部分,对第一部分进行卷积操作,然后将结果与原始未修改的第二部分拼接回来。对于训练过程,通过在部分通道上进行卷积,模型可以学到更适应当前任务的特征。同时,保留了原始未修改的通道,以用于后续的计算。

FasterNet作为Backbone

它分为四个阶段(Stage),每个阶段包含一系列的FasterNet块(FasterNet Block),并在每个阶段之前有一个嵌入(Embedding)或合并(Merging)层。最后的三个层用于特征分类。

在每个FasterNet块内部,采用了Partial Convolution (PConv) 操作,其后接两个Pointwise Convolution (PWConv) 操作。这一结构有效利用了所有通道的信息,形成一个T形的卷积结构,使得模型更加关注中心位置的特征。在PConv操作后,只在中间层之后加入归一化和激活层,以保持特征的多样性和降低计算延迟。

对于激活函数的选择,根据计算预算的大小,选择了GELU(对于较小的FasterNet变体)和ReLU(对于较大的FasterNet变体)。最后三层,即全局平均池化、Conv 1x1和全连接层,用于进行特征变换和分类。

为了满足不同的计算预算,提供了四个不同大小的FasterNet变体,分别为FasterNet-T0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。这些变体在深度和宽度上略有差异,但整体架构相似。详细的架构规格可在附录中找到。

下面的网络复现是参考的原作者以及下面paddle版本的实现:

"""
Paper address: <https://arxiv.org/pdf/2303.03667.pdf>
Reference from: https://github.com/JierunChen/FasterNet/blob/master/models/fasternet.py
Blog records: https://blog.csdn.net/m0_62919535/article/details/136334105
"""
import torch
import torch.nn as nn
from pyzjr.Models.bricks import DropPath__all__=["FasterNet", "FasterNetBlock", "fasternet_t0", "fasternet_t1", "fasternet_t2","fasternet_s", "fasternet_m", "fasternet_l"]class PartialConv(nn.Module):def __init__(self, dim, n_div=4, kernel_size=3, forward='split_cat'):"""PartialConv 模块Args:dim (int): 输入张量的通道数。n_div (int): 分割通道数的分母,用于确定部分卷积的通道数。forward (str): 使用的前向传播方法,可选 'slicing' 或 'split_cat'。"""super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, kernel_size, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass FasterNetBlock(nn.Module):def __init__(self, dim, expand_ratio=2, act_layer=nn.ReLU, drop_path_rate=0.0, forward='split_cat'):super().__init__()self.pconv = PartialConv(dim, forward=forward)self.conv1 = nn.Conv2d(dim, dim * expand_ratio, 1, bias=False)self.bn = nn.BatchNorm2d(dim * expand_ratio)self.act_layer = act_layer()self.conv2 = nn.Conv2d(dim * expand_ratio, dim, 1, bias=False)self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()def forward(self, x):residual = xx = self.pconv(x)x = self.conv1(x)x = self.bn(x)x = self.act_layer(x)x = self.conv2(x)x = residual + self.drop_path(x)return xclass FasterNet(nn.Module):def __init__(self, in_channel=3, embed_dim=40, act_layer=None,num_classes=1000, depths=None, drop_rate=0.0):super().__init__()# Embeddingself.stem = nn.Sequential(nn.Conv2d(in_channel, embed_dim, 4, stride=4, bias=False),nn.BatchNorm2d(embed_dim),act_layer())drop_path_list = [x.item() for x in torch.linspace(0, drop_rate, sum(depths))]self.feature = []embed_dim = embed_dimfor idx, depth in enumerate(depths):self.feature.append(nn.Sequential(*[FasterNetBlock(embed_dim, act_layer=act_layer, drop_path_rate=drop_path_list[sum(depths[:idx]) + i]) for i in range(depth)]))if idx < len(depths) - 1:# Mergingself.feature.append(nn.Sequential(nn.Conv2d(embed_dim, embed_dim * 2, 2, stride=2, bias=False),nn.BatchNorm2d(embed_dim * 2),act_layer()))embed_dim = embed_dim * 2self.feature = nn.Sequential(*self.feature)self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv1 = nn.Conv2d(embed_dim, 1280, 1, bias=False)self.act_layer = act_layer()self.fc = nn.Linear(1280, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):x = self.stem(x)x = self.feature(x)x = self.avg_pool(x)x = self.conv1(x)x = self.act_layer(x)x = self.fc(x.flatten(1))return xdef fasternet_t0(num_classes, drop_path_rate=0.0):return FasterNet(embed_dim=40,act_layer=nn.GELU,num_classes=num_classes,depths=[1, 2, 8, 2],drop_rate=drop_path_rate)def fasternet_t1(num_classes, drop_path_rate=0.02):return FasterNet(embed_dim=64,act_layer=nn.GELU,num_classes=num_classes,depths=[1, 2, 8, 2],drop_rate=drop_path_rate)def fasternet_t2(num_classes, drop_path_rate = 0.05):return FasterNet(embed_dim=96,act_layer=nn.ReLU,num_classes=num_classes,depths=[1, 2, 8, 2],drop_rate=drop_path_rate)def fasternet_s(num_classes, drop_path_rate = 0.03):return FasterNet(embed_dim=128,act_layer=nn.ReLU,num_classes=num_classes,depths=[1, 2, 13, 2],drop_rate=drop_path_rate)def fasternet_m(num_classes, drop_path_rate = 0.05):return FasterNet(embed_dim=144,act_layer=nn.ReLU,num_classes=num_classes,depths=[3, 4, 18, 3],drop_rate=drop_path_rate)def fasternet_l(num_classes, drop_path_rate = 0.05):return FasterNet(embed_dim=192,act_layer=nn.ReLU,num_classes=num_classes,depths=[3, 4, 18, 3],drop_rate=drop_path_rate)if __name__=="__main__":import torchsummarydevice = 'cuda' if torch.cuda.is_available() else 'cpu'input = torch.ones(2, 3, 224, 224).to(device)net = fasternet_t2(num_classes=4)net = net.to(device)out = net(input)print(out)print(out.shape)torchsummary.summary(net, input_size=(3, 224, 224))# t0 Total params: 2,629,624 Estimated Total Size (MB): 57.70# t1 Total params: 6,319,492 Estimated Total Size (MB): 100.02# t2 Total params: 13,707,012 Estimated Total Size (MB): 165.87# s Total params: 29,905,156 Estimated Total Size (MB): 304.56# m Total params: 52,245,588 Estimated Total Size (MB): 568.01# l Total params: 92,189,316 Estimated Total Size (MB): 843.09

参考文章

CVPR 2023 | 最新主干FasterNet!远超MobileViT等模型-CSDN博客

【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络-CSDN博客

FasterNet实战:使用FasterNet实现图像分类任务(二)_fasternet代码实现-CSDN博客

这篇关于部分卷积与FasterNet模型详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755341

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML