[数据集][目标检测]鸟类检测数据集VOC+YOLO格式11758张200类别

2024-02-28 09:52

本文主要是介绍[数据集][目标检测]鸟类检测数据集VOC+YOLO格式11758张200类别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):11758
标注数量(xml文件个数):11758
标注数量(txt文件个数):11758
标注类别数:200
标注类别名称:["Black_footed_Albatross","Laysan_Albatross","Sooty_Albatross","Groove_billed_Ani","Crested_Auklet","Least_Auklet","Parakeet_Auklet","Rhinoceros_Auklet","Brewer_Blackbird","Red_winged_Blackbird","Rusty_Blackbird","Yellow_headed_Blackbird","Bobolink","Indigo_Bunting","Lazuli_Bunting","Painted_Bunting","Cardinal","Spotted_Catbird","Gray_Catbird","Yellow_breasted_Chat","Eastern_Towhee","Chuck_will_Widow","Brandt_Cormorant","Red_faced_Cormorant","Pelagic_Cormorant","Bronzed_Cowbird","Shiny_Cowbird","Brown_Creeper","American_Crow","Fish_Crow","Black_billed_Cuckoo","Mangrove_Cuckoo","Yellow_billed_Cuckoo","Gray_crowned_Rosy_Finch","Purple_Finch","Northern_Flicker","Acadian_Flycatcher","Great_Crested_Flycatcher","Least_Flycatcher","Olive_sided_Flycatcher","Scissor_tailed_Flycatcher","Vermilion_Flycatcher","Yellow_bellied_Flycatcher","Frigatebird","Northern_Fulmar","Gadwall","American_Goldfinch","European_Goldfinch","Boat_tailed_Grackle","Eared_Grebe","Horned_Grebe","Pied_billed_Grebe","Western_Grebe","Blue_Grosbeak","Evening_Grosbeak","Pine_Grosbeak","Rose_breasted_Grosbeak","Pigeon_Guillemot","California_Gull","Glaucous_winged_Gull","Heermann_Gull","Herring_Gull","Ivory_Gull","Ring_billed_Gull","Slaty_backed_Gull","Western_Gull","Anna_Hummingbird","Ruby_throated_Hummingbird","Rufous_Hummingbird","Green_Violetear","Long_tailed_Jaeger","Pomarine_Jaeger","Blue_Jay","Florida_Jay","Green_Jay","Dark_eyed_Junco","Tropical_Kingbird","Gray_Kingbird","Belted_Kingfisher","Green_Kingfisher","Pied_Kingfisher","Ringed_Kingfisher","White_breasted_Kingfisher","Red_legged_Kittiwake","Horned_Lark","Pacific_Loon","Mallard","Western_Meadowlark","Hooded_Merganser","Red_breasted_Merganser","Mockingbird","Nighthawk","Clark_Nutcracker","White_breasted_Nuthatch","Baltimore_Oriole","Hooded_Oriole","Orchard_Oriole","Scott_Oriole","Ovenbird","Brown_Pelican","White_Pelican","Western_Wood_Pewee","Sayornis","American_Pipit","Whip_poor_Will","Horned_Puffin","Common_Raven","White_necked_Raven","American_Redstart","Geococcyx","Loggerhead_Shrike","Great_Grey_Shrike","Baird_Sparrow","Black_throated_Sparrow","Brewer_Sparrow","Chipping_Sparrow","Clay_colored_Sparrow","House_Sparrow","Field_Sparrow","Fox_Sparrow","Grasshopper_Sparrow","Harris_Sparrow","Henslow_Sparrow","Le_Conte_Sparrow","Lincoln_Sparrow","Nelson_Sharp_tailed_Sparrow","Savannah_Sparrow","Seaside_Sparrow","Song_Sparrow","Tree_Sparrow","Vesper_Sparrow","White_crowned_Sparrow","White_throated_Sparrow","Cape_Glossy_Starling","Bank_Swallow","Barn_Swallow","Cliff_Swallow","Tree_Swallow","Scarlet_Tanager","Summer_Tanager","Artic_Tern","Black_Tern","Caspian_Tern","Common_Tern","Elegant_Tern","Forsters_Tern","Least_Tern","Green_tailed_Towhee","Brown_Thrasher","Sage_Thrasher","Black_capped_Vireo","Blue_headed_Vireo","Philadelphia_Vireo","Red_eyed_Vireo","Warbling_Vireo","White_eyed_Vireo","Yellow_throated_Vireo","Bay_breasted_Warbler","Black_and_white_Warbler","Black_throated_Blue_Warbler","Blue_winged_Warbler","Canada_Warbler","Cape_May_Warbler","Cerulean_Warbler","Chestnut_sided_Warbler","Golden_winged_Warbler","Hooded_Warbler","Kentucky_Warbler","Magnolia_Warbler","Mourning_Warbler","Myrtle_Warbler","Nashville_Warbler","Orange_crowned_Warbler","Palm_Warbler","Pine_Warbler","Prairie_Warbler","Prothonotary_Warbler","Swainson_Warbler","Tennessee_Warbler","Wilson_Warbler","Worm_eating_Warbler","Yellow_Warbler","Northern_Waterthrush","Louisiana_Waterthrush","Bohemian_Waxwing","Cedar_Waxwing","American_Three_toed_Woodpecker","Pileated_Woodpecker","Red_bellied_Woodpecker","Red_cockaded_Woodpecker","Red_headed_Woodpecker","Downy_Woodpecker","Bewick_Wren","Cactus_Wren","Carolina_Wren","House_Wren","Marsh_Wren","Rock_Wren","Winter_Wren","Common_Yellowthroat"]
每个类别标注的框数:
Black_footed_Albatross 框数 = 59
Laysan_Albatross 框数 = 60
Sooty_Albatross 框数 = 58
Groove_billed_Ani 框数 = 60
Crested_Auklet 框数 = 44
Least_Auklet 框数 = 41
Parakeet_Auklet 框数 = 53
Rhinoceros_Auklet 框数 = 48
Brewer_Blackbird 框数 = 59
Red_winged_Blackbird 框数 = 60
Rusty_Blackbird 框数 = 60
Yellow_headed_Blackbird 框数 = 56
Bobolink 框数 = 60
Indigo_Bunting 框数 = 59
Lazuli_Bunting 框数 = 58
Painted_Bunting 框数 = 58
Cardinal 框数 = 57
Spotted_Catbird 框数 = 43
Gray_Catbird 框数 = 58
Yellow_breasted_Chat 框数 = 59
Eastern_Towhee 框数 = 60
Chuck_will_Widow 框数 = 54
Brandt_Cormorant 框数 = 58
Red_faced_Cormorant 框数 = 52
Pelagic_Cormorant 框数 = 60
Bronzed_Cowbird 框数 = 60
Shiny_Cowbird 框数 = 60
Brown_Creeper 框数 = 59
American_Crow 框数 = 59
Fish_Crow 框数 = 60
Black_billed_Cuckoo 框数 = 59
Mangrove_Cuckoo 框数 = 52
Yellow_billed_Cuckoo 框数 = 59
Gray_crowned_Rosy_Finch 框数 = 59
Purple_Finch 框数 = 59
Northern_Flicker 框数 = 60
Acadian_Flycatcher 框数 = 59
Great_Crested_Flycatcher 框数 = 60
Least_Flycatcher 框数 = 59
Olive_sided_Flycatcher 框数 = 60
Scissor_tailed_Flycatcher 框数 = 60
Vermilion_Flycatcher 框数 = 60
Yellow_bellied_Flycatcher 框数 = 59
Frigatebird 框数 = 60
Northern_Fulmar 框数 = 59
Gadwall 框数 = 60
American_Goldfinch 框数 = 60
European_Goldfinch 框数 = 60
Boat_tailed_Grackle 框数 = 59
Eared_Grebe 框数 = 60
Horned_Grebe 框数 = 60
Pied_billed_Grebe 框数 = 60
Western_Grebe 框数 = 60
Blue_Grosbeak 框数 = 60
Evening_Grosbeak 框数 = 60
Pine_Grosbeak 框数 = 60
Rose_breasted_Grosbeak 框数 = 60
Pigeon_Guillemot 框数 = 58
California_Gull 框数 = 59
Glaucous_winged_Gull 框数 = 59
Heermann_Gull 框数 = 59
Herring_Gull 框数 = 60
Ivory_Gull 框数 = 60
Ring_billed_Gull 框数 = 60
Slaty_backed_Gull 框数 = 48
Western_Gull 框数 = 60
Anna_Hummingbird 框数 = 60
Ruby_throated_Hummingbird 框数 = 60
Rufous_Hummingbird 框数 = 60
Green_Violetear 框数 = 60
Long_tailed_Jaeger 框数 = 60
Pomarine_Jaeger 框数 = 60
Blue_Jay 框数 = 60
Florida_Jay 框数 = 60
Green_Jay 框数 = 56
Dark_eyed_Junco 框数 = 60
Tropical_Kingbird 框数 = 60
Gray_Kingbird 框数 = 59
Belted_Kingfisher 框数 = 60
Green_Kingfisher 框数 = 60
Pied_Kingfisher 框数 = 60
Ringed_Kingfisher 框数 = 60
White_breasted_Kingfisher 框数 = 60
Red_legged_Kittiwake 框数 = 53
Horned_Lark 框数 = 60
Pacific_Loon 框数 = 59
Mallard 框数 = 59
Western_Meadowlark 框数 = 60
Hooded_Merganser 框数 = 60
Red_breasted_Merganser 框数 = 60
Mockingbird 框数 = 60
Nighthawk 框数 = 60
Clark_Nutcracker 框数 = 60
White_breasted_Nuthatch 框数 = 60
Baltimore_Oriole 框数 = 60
Hooded_Oriole 框数 = 60
Orchard_Oriole 框数 = 59
Scott_Oriole 框数 = 60
Ovenbird 框数 = 60
Brown_Pelican 框数 = 60
White_Pelican 框数 = 49
Western_Wood_Pewee 框数 = 60
Sayornis 框数 = 60
American_Pipit 框数 = 60
Whip_poor_Will 框数 = 48
Horned_Puffin 框数 = 59
Common_Raven 框数 = 59
White_necked_Raven 框数 = 59
American_Redstart 框数 = 60
Geococcyx 框数 = 60
Loggerhead_Shrike 框数 = 60
Great_Grey_Shrike 框数 = 60
Baird_Sparrow 框数 = 50
Black_throated_Sparrow 框数 = 60
Brewer_Sparrow 框数 = 58
Chipping_Sparrow 框数 = 60
Clay_colored_Sparrow 框数 = 59
House_Sparrow 框数 = 60
Field_Sparrow 框数 = 59
Fox_Sparrow 框数 = 60
Grasshopper_Sparrow 框数 = 60
Harris_Sparrow 框数 = 60
Henslow_Sparrow 框数 = 60
Le_Conte_Sparrow 框数 = 59
Lincoln_Sparrow 框数 = 59
Nelson_Sharp_tailed_Sparrow 框数 = 59
Savannah_Sparrow 框数 = 60
Seaside_Sparrow 框数 = 60
Song_Sparrow 框数 = 60
Tree_Sparrow 框数 = 60
Vesper_Sparrow 框数 = 60
White_crowned_Sparrow 框数 = 60
White_throated_Sparrow 框数 = 60
Cape_Glossy_Starling 框数 = 58
Bank_Swallow 框数 = 59
Barn_Swallow 框数 = 60
Cliff_Swallow 框数 = 60
Tree_Swallow 框数 = 60
Scarlet_Tanager 框数 = 60
Summer_Tanager 框数 = 60
Artic_Tern 框数 = 58
Black_Tern 框数 = 60
Caspian_Tern 框数 = 60
Common_Tern 框数 = 60
Elegant_Tern 框数 = 60
Forsters_Tern 框数 = 60
Least_Tern 框数 = 60
Green_tailed_Towhee 框数 = 60
Brown_Thrasher 框数 = 59
Sage_Thrasher 框数 = 60
Black_capped_Vireo 框数 = 51
Blue_headed_Vireo 框数 = 60
Philadelphia_Vireo 框数 = 59
Red_eyed_Vireo 框数 = 60
Warbling_Vireo 框数 = 60
White_eyed_Vireo 框数 = 60
Yellow_throated_Vireo 框数 = 59
Bay_breasted_Warbler 框数 = 60
Black_and_white_Warbler 框数 = 60
Black_throated_Blue_Warbler 框数 = 59
Blue_winged_Warbler 框数 = 60
Canada_Warbler 框数 = 60
Cape_May_Warbler 框数 = 60
Cerulean_Warbler 框数 = 60
Chestnut_sided_Warbler 框数 = 60
Golden_winged_Warbler 框数 = 57
Hooded_Warbler 框数 = 60
Kentucky_Warbler 框数 = 59
Magnolia_Warbler 框数 = 59
Mourning_Warbler 框数 = 60
Myrtle_Warbler 框数 = 60
Nashville_Warbler 框数 = 60
Orange_crowned_Warbler 框数 = 60
Palm_Warbler 框数 = 60
Pine_Warbler 框数 = 60
Prairie_Warbler 框数 = 60
Prothonotary_Warbler 框数 = 60
Swainson_Warbler 框数 = 56
Tennessee_Warbler 框数 = 59
Wilson_Warbler 框数 = 60
Worm_eating_Warbler 框数 = 59
Yellow_Warbler 框数 = 60
Northern_Waterthrush 框数 = 60
Louisiana_Waterthrush 框数 = 60
Bohemian_Waxwing 框数 = 60
Cedar_Waxwing 框数 = 60
American_Three_toed_Woodpecker 框数 = 50
Pileated_Woodpecker 框数 = 60
Red_bellied_Woodpecker 框数 = 60
Red_cockaded_Woodpecker 框数 = 58
Red_headed_Woodpecker 框数 = 60
Downy_Woodpecker 框数 = 60
Bewick_Wren 框数 = 60
Cactus_Wren 框数 = 60
Carolina_Wren 框数 = 60
House_Wren 框数 = 59
Marsh_Wren 框数 = 60
Rock_Wren 框数 = 60
Winter_Wren 框数 = 60
Common_Yellowthroat 框数 = 60
总框数:11758
使用标注工具:labelImg
标注规则:对类别进行画矩形框
重要说明:暂无
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

这篇关于[数据集][目标检测]鸟类检测数据集VOC+YOLO格式11758张200类别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755130

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav