OpenGL实现相机视频NV21格式转RGB

2024-02-28 07:48

本文主要是介绍OpenGL实现相机视频NV21格式转RGB,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频数据是由一张张图片组成的,每张图片的大小是由图片的(width * height)*3/2字节组成。图片分两部分:Y通道的长度是width * height。UV平面字节长度是:(width / 2) x (height / 2) x 2 = width x height / 2 。每两个连续的字节是2 x 2 = 4个原始像素的V,U(按照NV21规范的顺序)色度字节。换句话说,UV平面尺寸为(宽/ 2)×(高/ 2)像素,并且在每个维度中被下采样因子2, 此外,U,V色度字节是交错的。

下面给读者展示一副关于YUV-NV12, NV21存储的图片:

NV21和NV12的区别是U和V的顺序相反。

 

转化步骤:

1、将图像中的通道复制到可传递给纹理的缓冲区中:

byte[] image;
ByteBuffer yBuffer, uvBuffer;...yBuffer.put(image, 0, width*height);
yBuffer.position(0);uvBuffer.put(image, width*height, width*height/2);
uvBuffer.position(0);

2、将这些缓冲区传递给实际的GL纹理:

/** Prepare the Y channel texture*///Set texture slot 0 as active and bind our texture object to it
Gdx.gl.glActiveTexture(GL20.GL_TEXTURE0);
yTexture.bind();//Y texture is (width*height) in size and each pixel is one byte; 
//by setting GL_LUMINANCE, OpenGL puts this byte into R,G and B 
//components of the texture
Gdx.gl.glTexImage2D(GL20.GL_TEXTURE_2D, 0, GL20.GL_LUMINANCE, width, height, 0, GL20.GL_LUMINANCE, GL20.GL_UNSIGNED_BYTE, yBuffer);//Use linear interpolation when magnifying/minifying the texture to 
//areas larger/smaller than the texture size
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_MIN_FILTER, GL20.GL_LINEAR);
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_MAG_FILTER, GL20.GL_LINEAR);
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_WRAP_S, GL20.GL_CLAMP_TO_EDGE);
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_WRAP_T, GL20.GL_CLAMP_TO_EDGE);/** Prepare the UV channel texture*///Set texture slot 1 as active and bind our texture object to it
Gdx.gl.glActiveTexture(GL20.GL_TEXTURE1);
uvTexture.bind();//UV texture is (width/2*height/2) in size (downsampled by 2 in 
//both dimensions, each pixel corresponds to 4 pixels of the Y channel) 
//and each pixel is two bytes. By setting GL_LUMINANCE_ALPHA, OpenGL 
//puts first byte (V) into R,G and B components and of the texture
//and the second byte (U) into the A component of the texture. That's 
//why we find U and V at A and R respectively in the fragment shader code.
//Note that we could have also found V at G or B as well. 
Gdx.gl.glTexImage2D(GL20.GL_TEXTURE_2D, 0, GL20.GL_LUMINANCE_ALPHA, width/2, height/2, 0, GL20.GL_LUMINANCE_ALPHA, GL20.GL_UNSIGNED_BYTE, uvBuffer);//Use linear interpolation when magnifying/minifying the texture to 
//areas larger/smaller than the texture size
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_MIN_FILTER, GL20.GL_LINEAR);
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_MAG_FILTER, GL20.GL_LINEAR);
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_WRAP_S, GL20.GL_CLAMP_TO_EDGE);
Gdx.gl.glTexParameterf(GL20.GL_TEXTURE_2D, GL20.GL_TEXTURE_WRAP_T, GL20.GL_CLAMP_TO_EDGE);

3、我们渲染之前准备的网格(覆盖整个屏幕), 着色器将负责渲染网格上的绑定纹理:

shader.begin();//Set the uniform y_texture object to the texture at slot 0
shader.setUniformi("y_texture", 0);//Set the uniform uv_texture object to the texture at slot 1
shader.setUniformi("uv_texture", 1);mesh.render(shader, GL20.GL_TRIANGLES);
shader.end();

4、着色器接管将纹理渲染到网格的任务, 实现实际转换的片段着色器如下所示:

String fragmentShader = "#ifdef GL_ES\n" +"precision highp float;\n" +"#endif\n" +"varying vec2 v_texCoord;\n" +"uniform sampler2D y_texture;\n" +"uniform sampler2D uv_texture;\n" +"void main (void){\n" +"   float r, g, b, y, u, v;\n" +//We had put the Y values of each pixel to the R,G,B components by //GL_LUMINANCE, that's why we're pulling it from the R component,//we could also use G or B"   y = texture2D(y_texture, v_texCoord).r;\n" + //We had put the U and V values of each pixel to the A and R,G,B //components of the texture respectively using GL_LUMINANCE_ALPHA. //Since U,V bytes are interspread in the texture, this is probably //the fastest way to use them in the shader"   u = texture2D(uv_texture, v_texCoord).a - 0.5;\n" +"   v = texture2D(uv_texture, v_texCoord).r - 0.5;\n" +//The numbers are just YUV to RGB conversion constants"   r = y + 1.13983*v;\n" +"   g = y - 0.39465*u - 0.58060*v;\n" +"   b = y + 2.03211*u;\n" +//We finally set the RGB color of our pixel"   gl_FragColor = vec4(r, g, b, 1.0);\n" +"}\n"; 

 

这篇关于OpenGL实现相机视频NV21格式转RGB的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754850

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug