InfluxDB存储引擎—— TSI文件与数据读取

2024-02-27 23:50

本文主要是介绍InfluxDB存储引擎—— TSI文件与数据读取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章暂未完成

在上一篇文章《InfluxDB存储引擎—— TSM文件与数据写入》中,对数据写入流程和数据文件的结构进行了介绍,再了解了数据写入流程和TSM文件结构之后,我们知道数据在磁盘是按时间、按数据源、按列存储的,在这样的存储结构上,读取数据的流程是怎样的呢?采用了哪些数据结构或文件来提升查询的效率呢?这就是本篇文章要讲的内容。

目录

数据读取流程

基于内存的倒排索引

作用

核心数据结构及其作用

优缺点

基于磁盘的倒排索引-TSI文件

TSI文件的作用

TSI文件的结构

Measurement Block

Tag Block

Series Block


数据读取流程

时序数据最常见的查询场景有两个:按时间维度查询 和按数据源维度查询。如何提高这两个场景的查询效率是每种时序数据库都要充分考虑的问题。

结合之前的文章中所提到的数据写入流程和存储结构,我们很容易了解到InfluxDB中,如果能根据查询条件确定数据所属的时间范围和series(即所属数据源的唯一标识),即可大量减少数据扫描的范围,从而提高性能。InfluxDB正是通过这样的方式来提高查询数据的效率。

假设在如下图的场景中,需要查询atlalsdata发布在baidu的所有广告20188月份的pc端的总点击量:

查询语句:

select sum(pc) from advertise 
where publisher=‘atlasdata’ and platform = ‘baidu’ 
and time>='2018-08-01' and time <'2018-09-01'

数据读取的流程:

第一步:找出atlasdata发布在baidu的所有广告的seriesKey

第二步:根据seriesKey找到这些广告20188月份的数据

              通过时间范围确定存储2018年8月份数据的shardgroup, 再根据seriesKey进行hash找到shardgroup下存储这些数据源的shard

第三步:找出这些数据中的pc端的数据

               扫描每个shard中的TSM文件中的index block,找到符合条件的data block,再在data block中把符合条件的所查询的数据筛选出来进行聚合

查询流程中的第二步和第三步通过简单的说明都很好理解,那第一步是如何实现的呢?IinfluxDB通过对tags创建倒排索引来达到这一目的,详细请看下文。

基于内存的倒排索引

作用

提高数据源维度的查询效率:找出符合查询条件的所有数据源的seriesKey

核心数据结构及其作用

  • map<tagkey, map<tagvalue, List<SeriesID>>>

保存每个tag对应的所有值对应的所有seriesID,通过条件(比如 tag1='value')获取满足条件的所有数据源的唯一标识

tagkey: 数据源属性名称

tagvalue: tagkey所指属性的值

SeriesID:满足tagkey=tagvalue的所有数据源的唯一标识,seriesID与数据源唯一标识SeriesKey一一对应

 

  • map< SeriesID,SeriesKey>

保存seriesIDSeriesKey的映射关系,通过seriesID获取seriesKey

为什么第一个双重map中不直接用SeriesKey呢?是为了节省内存空间,举个例子:

假如现在有3个Tag组合形成一个seriesKey:measurement=m_name,tag_1=value_1,tag_2=value_2,tag_3=value_3。那么构造形成的双重map结构:

<tag_1, <value_1, seriesKey>>
<tag_2, <value_2, seriesKey>>
<tag_3, <value_3, seriesKey>>

可以发现同一个seriesKey在内存中有多份冗余,而且seriesKey = measurement + tags,随着tag值的增加,内存消耗非常明显,因此为了节省内存消耗,采用Int对seriesKey进行编码,代替双重map中的seriesKey

优缺点

  • 优点

       加快数据源维度的查询效率

  • 缺点

      1. 受限于内存大小

       2. 一旦InfluxDB进程宕掉,需要扫描解析所有TSM文件并在内存中重新构建,恢复时间很长。

基于磁盘的倒排索引-TSI文件

上一节中介绍了基于内存的倒排索引,其作用是提升数据源维度的查询效率,但其缺点也非常明显且影响很大,为了解决这些问题,InfluxDB实现了基于磁盘的倒排索引,用TSI文件来存储索引信息,下文将对其结构和各模块的作用进行详细讲解。

TSI文件的作用

提高数据源维度的查询效率:找出符合查询条件的所有数据源的seriesKey,并解决内存索引受限于内存大小、恢复时间长的问题。

TSI文件的结构

下图中对TSI文件的结构和各大模块所存储的内容及作用做了简单说明,下文将对每个模块内部结构进行详细描述:

Measurement Block

作用:找到对应的measurement信息,并获取表的tag对应的Tag blockoffset/size

结构:

Measurement Block由三大部分组成

  • Block Trailer : 记录各模块的offset和size
  • HashIndex : 记录每个measurement的偏移量
  • Mesurement : 记录具体表的信息,包括表的名称、所有tag对应的Tag Block的offset和size等

Measurement Block的扫描流程如下:

  1. 首先在TSI文件的Index File Trailer部分获取整个Mesurement Block的offset和size,
  2. 然后再根据Measurement Block中的Block Trailer和Hash Index确认要查询的表对应的Measurement的位置,
  3. 读取对应的Measurement中的Tag Block的offset和size

Tag Block

作用:根据条件中tag及值找到满足条件的所有seriesID

结构:

Series Block

作用:

结构:

 

这篇关于InfluxDB存储引擎—— TSI文件与数据读取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/753919

相关文章

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下