微调实操四:直接偏好优化方法-DPO

2024-02-27 05:20

本文主要是介绍微调实操四:直接偏好优化方法-DPO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在《微调实操三:人类反馈对语言模型进行强化学习(RLHF)》中提到过第三阶段有2个方法,一种是是RLHF, 另外一种就是今天的DPO方法, DPO通过直接优化语言模型来实现对其行为的精确控制,而无需使用复杂的强化学习,也可以有效学习到人类偏好,DPO相较于RLHF更容易实现且易于训练,效果更好.

1、DPO VS RLHF

在这里插入图片描述

DPO 是一种自动微调方法,它通过最大化预训练模型在特定任务上的奖励来优化模型参数。与传统的微调方法相比,DPO 绕过了建模奖励函数这一步,而是通过直接在偏好数据上优化模型来提高性能。相对RLHF两阶段而言具有多项优越性:

(1)简单性:DPO更容易实施和培训,使其更易于使用。

(2)稳定性:不易陷入局部最优,保证训练过程更加可靠。

(3)效率:与RLHF 相比, DPO 需要更少的计算资源和数据,使其计算量轻。

(4)有效性:实验结果表明,DPO在情感控制、摘要和对话生成等任务中可以优于 RLHF 。

并不是说DPO没有奖励模型, 而是利用同个阶段训练建立模型和强化学习, 在 DPO 中,目标函数是优化模型参数以最大化奖励的函数。除了奖励最大化目标外,还需要添加一个相对于参考模型的 KL 惩罚项,以防止模型学习作弊或钻营奖励模型。
在这里插入图片描述

2、trl库

TRL(Transformer Reinforcement Learning)是一个全面的库,专为使用强化学习训练变换器语言模型而设计。它包含多种工具,可以支持从监督式微调(SFT)开始,通过奖励建模(RM)阶段,最终达到近端策略优化(PPO)阶段和DPO。此库 transformers框架无缝集成。所以未来在人工智能领域transformers必学.

在这里插入图片描述
在这里插入图片描述

3、实操

3.1 数据集
在这里插入图片描述

采用《微调实操三:人类反馈对语言模型进行强化学习(RLHF)》 阶段中训练奖励模型的数据集

3.2 合并指令微调的模型

!python /kaggle/working/MedicalGPT/merge_peft_adapter.py --model_type bloom \
--base_model merged-pt --lora_model outputs-sft-v1 --output_dir merged-sft/

3.3 DPO训练脚本


# dpo training
%cd /kaggle/working/autoorder
!ls 
!git pull
!pip install -r algorithm/llm/requirements.txt
!pip install Logbook
import os
os.environ['RUN_PACKAGE'] = 'algorithm.llm.train.dpo_training'
os.environ['RUN_CLASS'] = 'DPOTraining'
print(os.getenv("RUN_PACKAGE"))
!python main.py \--model_type bloom \--model_name_or_path ./merged-sft \--train_file_dir /kaggle/working/MedicalGPT/data/reward \--validation_file_dir /kaggle/working/MedicalGPT/data/reward \--per_device_train_batch_size 3 \--per_device_eval_batch_size 1 \--do_train \--do_eval \--use_peft True \--max_train_samples 1000 \--max_eval_samples 10 \--max_steps 100 \--eval_steps 10 \--save_steps 50 \--max_source_length 128 \--max_target_length 128 \--output_dir outputs-dpo-v1 \--target_modules all \--lora_rank 8 \--lora_alpha 16 \--lora_dropout 0.05 \--torch_dtype float16 \--fp16 True \--device_map auto \--report_to tensorboard \--remove_unused_columns False \--gradient_checkpointing True \--cache_dir ./cache \--use_fast_tokenizer

这篇关于微调实操四:直接偏好优化方法-DPO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751335

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复