23年中科院1区算法|长鼻浣熊优化算法COA原理及其利用与改进(Matlab/Python)

2024-02-27 01:44

本文主要是介绍23年中科院1区算法|长鼻浣熊优化算法COA原理及其利用与改进(Matlab/Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章来源于我的个人公众号:KAU的云实验台,主要更新智能优化算法的原理、应用、改进

CEC2005中的测试在这里插入图片描述

本文
KAU将介绍一个2023年1月发表在中科院1区KBS上的优化算法——长鼻浣熊优化算法(Coati Optimization Algorithm,COA)[1]

在这里插入图片描述

该算法由Dehghani教授等人[1]于2023年提出,其模拟了北美长鼻浣熊合作攻击鬣蜥时的行为(勘探)以及分散逃离捕食者时的行为(开发),具有无需设置控制参数、高效率以及较强的平衡能力(勘探/开发)等优势,与11种优化算法在51个基准函数上进行测试,显示出其惊艳的性能。

在这里插入图片描述

图源文献[1]

本文将介绍COA原理、利用与改进,最后也给出了算法的MATLAB和Python实现。将这样性能优异的新算法应用于一些工程问题也能够在一定程度上提升文章的创新性。

00 目录

1 长鼻浣熊优化 (COA) 算法原理

2 代码目录

3 算法性能

4 源码获取

01 长鼻浣熊优化 (COA)算法原理

COA通过合作狩猎鬣蜥以及分散逃离捕食者两种行为来实现模型参数的优化,原理​如下:

1.1 勘探—合作狩猎鬣蜥
在这里插入图片描述

图源文献[1]

在该阶段,一半的长鼻浣熊爬上一棵树接近鬣蜥进行狩猎,同时另一半长鼻浣熊会聚集在树下游走等待鬣蜥落地,当鬣蜥落地,长鼻浣熊将猎杀它,鬣蜥即代表了全局最优位置,这种求解过程展现了COA的全局探索能力。

爬树长鼻浣熊行为的数学模型为:
在这里插入图片描述

鬣蜥落地位置随机,地面长鼻浣熊也将据此随机移动,其数学模型为:
在这里插入图片描述

式中I为随机整数。

1.2 开发—分散逃离捕食者

在这里插入图片描述

图源文献[1]

若出现捕食者攻击长鼻浣熊,则长鼻浣熊将逃离原来的位置,并在附近的安全地点寻求庇护。这反映了COA在局部搜索方面的性能,其数学模型为:
在这里插入图片描述

每次移动后,都将采用贪婪策略进行位置更新,即:

在这里插入图片描述

1.5 算法流程

COA算法已介绍完毕,包括勘探和开发两个阶段,结构简明,并且性能也不错,后续KAU也会推出COA的原创改进。该算法的的程图如下:
在这里插入图片描述

1.6 算法利用&改进

利用方面,COA的勘探阶段设计的比较有意思,其将种群分为两拨,各自执行不同的公式,前1/2受到了种群信息的引导,后1/2则进行分散的随机搜索,种群既能得到一定引导信息,同时也能分散扩大搜索范围,使得种群具有良好的全局性能,这一种策略可以加以利用。并且可以看到COA在开发阶段更倾向于在自身周围进行细致搜索,因此其全局最优的引导信息都落在了勘探阶段,进一步可以看到勘探阶段的重要性,想必将其引入其他算法中也能取得效果。

改进方面,可以注意COA的开发阶段,其主要是在当前个体周围进行搜索,没有种群信息的引导,可能不利于后期的收敛,可以引入全局最优信息对公式进行改进。后续KAU也将对COA算法进行原创改进,感兴趣的朋友可以关注一波哦~

02 代码目录

在这里插入图片描述

(左Python,右Matlab)

代码包含MATLAB和Python,Python代码为KAU按照原作者的Matlab代码手搓而成。考虑到很多同学获取代码后,MATLAB代码部分有乱码(MATLAB版本问题),有几个方法:

①可以将MATLAB版本改为2020及以上;

②将m文件用记事本打开,再将记事本中的代码复制到Matlab即可

代码都经过作者重新注释,代码清爽,可读性强。

03 算法性能

采用标准测试函数初步检验其寻优性能

在MATLAB中,进行标准函数的测试,执行程序结果如下:

在这里插入图片描述

在Python中,进行标准函数的测试,执行程序结果如下:

在这里插入图片描述

​MATLAB和Python都进行了函数测试,测试效果都不错,其收敛速度和精度很好。

04 源码获取

在公众号(KAU的云实验台)后台回复 COA 即可

后续KAU将更新关于COA的原创改进算法,感兴趣的话可以关注不迷路~

参考文献

[1] DEHGHANI M, MONTAZERI Z, TROJOVSKÁ E, et al.Coati Optimization Algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J].Knowledge-based systems, 2023, 259: 110011.

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看(ง •̀_•́)ง(不点也行),你们的鼓励就是我坚持的动力!若有定制需求,可私信作者。

这篇关于23年中科院1区算法|长鼻浣熊优化算法COA原理及其利用与改进(Matlab/Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750846

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig