经典文献阅读之--InsightMapper(深入研究矢量化高精地图的内部实例信息)

本文主要是介绍经典文献阅读之--InsightMapper(深入研究矢量化高精地图的内部实例信息),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

高精地图作为自动驾驶中最关键的组成部分,矢量化高精(HD)地图包含有关周围道路元素的详细信息,这对于现代自动驾驶汽车的各项下游任务是至关重要的,例如车辆规划和控制。最近的工作试图直接检测矢量化高精地图,将其作为点集预测任务,从而显著提高了检测性能。然而,这些方法无法分析并且利用预测点之间的内部实例相关性,这阻碍了进一步的发展。《INSIGHTMAPPER: A CLOSER LOOK AT INNERINSTANCE INFORMATION FOR VECTORIZED HIGHDEFINITION MAPPING》利用内部实例信息通过Transformers进行矢量化高精建图,并且引入了InsightMapper。本文提出了InsightMapper中的三种新型设计,其通过不同的方式利用内部实例信息,包括混合查询生成、内部实例查询融合以及内部实例特征聚合。并最终完成了建图。具体的项目代码在github上可以查到。

1. 主要贡献

本文的贡献总结如下:

1)本文研究了内部实例点之间的相关性,证明了利用内部实例点信息可以有效地提高最终性能;

2)为了更好地利用内部实例信息,本文引入了一个称为InsightMapper的新模型,用于在线高精地图检测。InsightMapper包含三个具有不同功能的新型模块,包括查询生成、查询融合以及内部实例自注意力

3)本文评估了所有的模块设计以及nuScenes数据集上的基线。InsightMapper的性能优于所有基线模型,并且维持了具有竞争力的效率。

2. 点相关性

2.1 预处理:向量地图分解和采样

G G G为场景的原始向量地图标签,包含顶点# V V V和边 E E E。向量地图包含多类道路元素,包括人行横道、道路分隔线、道路边界和车道中心线。其中,前三类道路元素是简单的折线或多边形,没有交点。而车道中心线具有更复杂的拓扑结构,如车道分离、车道合并和车道交叉。为了统一所有向量元素,将向量地图分解为没有交点的简单形状(即折线和多边形)。将向量地图中度数大于2的顶点(即交点顶点)从 G G G中移除,并断开相应的边。这样,得到一组没有交点的简单折线和多边形,表示为 G ∗ = { l i } i = 0 N ∗ G^∗ = \{l_i\}^{N^∗}_{i=0} G={li}i=0N,其中 G ∗ G^∗ G是一个无向图。每个形状 l i l_i li被定义为一个实例, N ∗ N^∗ N表示向量地图中实例的总数。为了增强模型的并行化能力,按照MapTR的方法,每个实例都被均匀地重新采样为具有固定长度点的形式,即 l i = ( v 0 , v 1 , … , v j , … v n p ) l_i = (v_0, v_1, …, v_j , …v_{n_p}) li=(v0,v1,,vj,vnp) l i l_i li按照 v 0 v_0 v0 v n p v_{n_p} vnp的顺序排列,其中 n p n_p np是每个实例采样点的数量。对于多边形实例, v 0 v_0 v0等于 v n p v_{n_p} vnp。预处理模块的可视化如图2所示。
在这里插入图片描述

图2:向量地图的预处理:粉色线条表示边缘,橙色点表示顶点,蓝色点表示度数大于两个的交叉点。为了简化图形,移除了交叉点,并且每个获得的实例被均匀重新采样为 n p n_p np 个顶点(在本例中, n p n_p np=4)

图3:内部和外部相关性的可视化。绿色线条表示蓝色点与同一实例中其他点之间的内部相关性,而红色线条表示蓝色点与属于不同实例的点之间的外部相关性,应该被阻断以防止干扰。

…详情请参照古月居

这篇关于经典文献阅读之--InsightMapper(深入研究矢量化高精地图的内部实例信息)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750584

相关文章

C#读取本地网络配置信息全攻略分享

《C#读取本地网络配置信息全攻略分享》在当今数字化时代,网络已深度融入我们生活与工作的方方面面,对于软件开发而言,掌握本地计算机的网络配置信息显得尤为关键,而在C#编程的世界里,我们又该如何巧妙地读取... 目录一、引言二、C# 读取本地网络配置信息的基础准备2.1 引入关键命名空间2.2 理解核心类与方法

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

使用Python检查CPU型号并弹出警告信息

《使用Python检查CPU型号并弹出警告信息》本教程将指导你如何编写一个Python程序,该程序能够在启动时检查计算机的CPU型号,如果检测到CPU型号包含“I3”,则会弹出一个警告窗口,感兴趣的小... 目录教程目标方法一所需库步骤一:安装所需库步骤二:编写python程序步骤三:运行程序注意事项方法二

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测