本文主要是介绍树莓派外接摄像头火焰检测模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
import cv2
import time
import numpy as np# 打开摄像头
cap = cv2.VideoCapture(0) # 参数0表示自己电脑的摄像头,1则一般表示电脑外接的摄像头# 设置开始时间
start_time = time.time()
# 设置帧率
frame_rate = 2 # 每秒两帧# 循环读取摄像头数据
while True:# 检查是否需要读取下一帧elapsed_time = time.time() - start_timeif elapsed_time < 1 / frame_rate:continue# 读取一帧视频数据ret, frame = cap.read()if not ret:break# 进行火焰检测img = frame # 直接将收集到的帧率当作图片使用redThre = 115 # 指的是115~135红色分量阈值sThre = 65 # 指的是55~65饱和度阈值B = img[:, :, 0]G = img[:, :, 1]R = img[:, :, 2]B1 = img[:, :, 0] / 255G1 = img[:, :, 1] / 255R1 = img[:, :, 2] / 255minValue = np.array(np.where(R1 <= G1, np.where(G1 <= B1, R1, np.where(R1 <= B1, R1, B1)), np.where(G1 <= B1, G1, B1)))sumValue = R1 + G1 + B1# HSI中S分量计算公式S = np.array(np.where(sumValue != 0, (1 - 3.0 * minValue / sumValue), 0))Sdet = (255 - R) / 20SThre = ((255 - R) * sThre / redThre)# 判断条件fireImg = np.array(np.where(R > redThre, np.where(R >= G, np.where(G >= B, np.where(S > 0, np.where(S > Sdet, np.where(S >= SThre, 255, 0), 0), 0), 0), 0), 0))gray_fireImg = np.zeros([fireImg.shape[0], fireImg.shape[1], 1], np.uint8)gray_fireImg[:, :, 0] = fireImgmeBImg = cv2.medianBlur(gray_fireImg, 5)kernel = np.ones((5, 5), np.uint8)ProcImg = cv2.dilate(meBImg, kernel)# 绘制矩形框contours, _ = cv2.findContours(ProcImg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)ResImg = img.copy()for c in range(0, len(contours)):# 获取矩形的左上角坐标(x,y),以及矩形的宽和高w、hx, y, w, h = cv2.boundingRect(contours[c])l_top = (x, y)r_bottom = (x + w, y + h)cv2.rectangle(ResImg, l_top, r_bottom, (255, 0, 0), 2)cv2.imshow("RESULT", ResImg)c = cv2.waitKey(1)# 更新开始时间start_time = time.time()# 释放资源
cap.release()
cv2.destroyAllWindows()
应该是直接使用颜色阈值去检测的原因还是什么,代码实际火焰检测效果有些差强人意,准备后面直接使用yolo尝试训练一下,看能不能有其它更好的效果;
虽然在代码编写的时候是在pycharm中,但是由于后续如果要使用的话就必须要在树莓派主控板中运行,为了照顾树莓派的性能,特意使用跳帧的方法,降低了单位时间内需要判断火焰位置的图片数量。
实际应用过程中,可以发现代码受到光照的影响是比较严重的。
这篇关于树莓派外接摄像头火焰检测模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!