TensorRT及CUDA自学笔记007 运行时库及矩阵加法demo

2024-02-26 21:28

本文主要是介绍TensorRT及CUDA自学笔记007 运行时库及矩阵加法demo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorRT及CUDA自学笔记007 运行时库及矩阵加法demo

Runtime 运行时库

明天再补充,先去准备面试了

矩阵加法demo

cudaMalloc和cudaMemcpy

它们和c的malloc和memcpy功能一致,只是操作的不是host端的内存空间,而是device端的”显存空间“

cudaSetDevice

cudaSetDevice是用于针对主机线程指定Device的cudaAPI函数,接下来主机中这个线程的后续的cuda平台的所有操作都是针对于这个被指定的设备的。

error_check

error_check是我写的检查函数,用于检查你调用的cudaAPI函数是否调用失败或报错,如果失败,error_check会为你输出失败的原因、文件路径和代码行号。

main.cu

#include"common/common.h"void data_inital(float* data,int N){time_t t;srand((unsigned)time(&t));std::cout<<"data: ";//初始化数据for(int i=0;i<N;i++){data[i] = (float)(rand()%0xff)/10.0f;std::cout<<data[i]<<" ";}std::cout<<std::endl;return;
};__global__ void add(float* a, float* b,float* c,int N){int threadID = threadIdx.y*blockDim.x+threadIdx.x;if(threadID<N){c[threadID] = a[threadID]+b[threadID];}
}int main(int argc, char** argv){int deviceCount {0};cudaDeviceProp deviceProp;int driverVersion {0};int runtimeVersion {0};device_information(&deviceCount,&deviceProp,&driverVersion,&runtimeVersion);std::cout<<std::endl;cudaError_t error = error_check(cudaSetDevice(0),__FILE__,__LINE__);//针对主机线程指定Device,接下来主机中这个线程的后续的cuda平台的所有操作都是针对于这个设备的。if(error == cudaSuccess){std::cout<<"cudaSetDevice success!"<<std::endl;std::cout<<"set on device:"<< deviceProp.name << std::endl;}else{std::cout<<"cudaSetDevice failed!"<<std::endl;return -1;}int numElem = 16;size_t nBytes = numElem * sizeof(float);// 初始化主机端数据缓冲区float *hostDataA, *hostDataB, *gpuRef;hostDataA = (float*)malloc(nBytes);hostDataB = (float*)malloc(nBytes);gpuRef = (float*)malloc(nBytes);if (hostDataA == NULL || hostDataB == NULL || gpuRef == NULL){std::cout<<"malloc failed!"<<std::endl;return -1;}data_inital(hostDataA,numElem);    //初始化数据data_inital(hostDataB,numElem);    //初始化数据memset(gpuRef, 0, nBytes);// 初始化设备端数据缓冲区float *deviceDataA, *deviceDataB, *deviceDataC;cudaMalloc((float**)&deviceDataA, nBytes);//注意,cudaMalloc的修饰符为__host____device___,也就是说host和device都可以使用这个cudaAPI函数cudaMalloc((float**)&deviceDataB, nBytes);cudaMalloc((float**)&deviceDataC, nBytes);if (deviceDataA == NULL || deviceDataB == NULL || deviceDataC == NULL){std::cout<<"cudaMalloc failed!"<<std::endl;free(hostDataA);free(hostDataB);free(gpuRef);return -1;}if(cudaSuccess ==  cudaMemcpy(deviceDataA,hostDataA,nBytes,cudaMemcpyHostToDevice) &&cudaSuccess ==  cudaMemcpy(deviceDataB,hostDataB,nBytes,cudaMemcpyHostToDevice) && cudaSuccess ==  cudaMemcpy(deviceDataC,gpuRef,nBytes,cudaMemcpyHostToDevice)) ///注意,cudaMemcpy的修饰符为__host__,也就是说只有host可以使用这个cudaAPI函数{std::cout<<"successfully copy data from host to device "<< deviceProp.name <<std::endl;}else{std::cout<<"copy data from host to device"<< deviceProp.name <<" failed!" <<std::endl;free(hostDataA);free(hostDataB);free(gpuRef);return -1;}//加载核函数dim3 block (4,4);dim3 grid (1,1);add<<<grid,block>>>(deviceDataA,deviceDataB,deviceDataC,numElem);//将数据从设备端拷贝回主机端cudaMemcpy(gpuRef,deviceDataC,nBytes,cudaMemcpyDeviceToHost);//打印运算结果std::cout<<"result: ";for(size_t i = 0; i < numElem; i++)std::cout<<gpuRef[i] << " ";std::cout<<std::endl;//释放资源free(hostDataA);free(hostDataB);free(gpuRef);cudaFree(deviceDataA);cudaFree(deviceDataB);cudaFree(deviceDataC);cudaDeviceReset();return 0;
}

common.h

#include<sys/time.h>
#include<iostream>
#include<cuda_runtime.h>
#include<stdio.h>//用于检查你的cuda函数是否调用失败
cudaError_t error_check(cudaError_t status,const char *filePathName,int lineNumber){if(status !=cudaSuccess){std::cout << "CUDA API error " << cudaGetErrorName(status) << " at " << filePathName << " in line " << lineNumber << std::endl;std::cout << "description :" << cudaGetErrorString(status) << std::endl;return status;}return status;
}bool device_information(int* ptr_devicCount,cudaDeviceProp* ptr_deviceProp,int* ptr_driverVersion,int* ptr_runtimeVersion){cudaGetDeviceCount(ptr_devicCount);if(*ptr_devicCount == 0){std::cerr << "error: no devices supporting CUDA.\n";return false;}else{std::cout << "Detected " << *ptr_devicCount << " CUDA Capable device(s)\n";}for(int i {0}; i < *ptr_devicCount; i++){cudaSetDevice(i);error_check(cudaGetDeviceProperties(ptr_deviceProp,i),__FILE__,__LINE__);std::cout << "Device " << i << " name: " << ptr_deviceProp->name << std::endl;error_check(cudaDriverGetVersion(ptr_driverVersion),__FILE__,__LINE__);error_check(cudaRuntimeGetVersion(ptr_runtimeVersion),__FILE__,__LINE__);std::cout << "CUDA Driver Version / Runtime Version: " << *ptr_driverVersion/1000 << "." << (*ptr_driverVersion%100)/10 << "." << *ptr_driverVersion%10 << "/" << *ptr_runtimeVersion/1000 << "."<< (*ptr_runtimeVersion%100)/10 << "." << *ptr_runtimeVersion%10 << std::endl;std::cout << "CUDA Capability Major/Minor version number: " << ptr_deviceProp->major << "." << ptr_deviceProp->minor << std::endl;std::cout << "Total amount of global memory: " << ptr_deviceProp->totalGlobalMem << std::endl;std::cout << "Total amount of constant memory: " << ptr_deviceProp->totalConstMem << std::endl;std::cout << "Total amount of shared memory per block: " << ptr_deviceProp->sharedMemPerBlock << std::endl;std::cout << "Total number of registers available per block: " << ptr_deviceProp->regsPerBlock << std::endl;std::cout << "Warp size: " << ptr_deviceProp->warpSize << std::endl;std::cout << "Maximum number of threads per block: " << ptr_deviceProp->maxThreadsPerBlock << std::endl;std::cout << "Maximum sizes of each dimension of a block: " << ptr_deviceProp->maxThreadsDim[0] << " x " << ptr_deviceProp->maxThreadsDim[1] << " x " << ptr_deviceProp->maxThreadsDim[2] << std::endl;std::cout << "Maximum sizes of each dimension of a grid: " << ptr_deviceProp->maxGridSize[0] << " x "<< ptr_deviceProp->maxGridSize[1] << " x " << ptr_deviceProp->maxGridSize[2] << std::endl;std::cout << "Maximum memory pitch: " << ptr_deviceProp->memPitch << std::endl;std::cout << "Texture alignment: " << ptr_deviceProp->textureAlignment << std::endl;std::cout << "Concurrent copy and execution: " << ptr_deviceProp->deviceOverlap << std::endl;std::cout << "Run time limit on kernels: " << ptr_deviceProp->kernelExecTimeoutEnabled << std::endl;std::cout << "Integrated: " << ptr_deviceProp->integrated << std::endl;std::cout << "Support host page-locked memory mapping: " << ptr_deviceProp->canMapHostMemory << std::endl;std::cout << "Alignment requirement for Surfaces: " << ptr_deviceProp->surfaceAlignment << std::endl;std::cout << "Device has ECC support: " << ptr_deviceProp->ECCEnabled << std::endl;std::cout << "Device is using TCC driver model: " << ptr_deviceProp->tccDriver << std::endl;std::cout << "Device supports Unified Addressing (UVA): " << ptr_deviceProp->unifiedAddressing << std::endl;std::cout << "Device supports Compute Preemption: " << ptr_deviceProp->computePreemptionSupported << std::endl;}return true;
}

这篇关于TensorRT及CUDA自学笔记007 运行时库及矩阵加法demo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750214

相关文章

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

eclipse如何运行springboot项目

《eclipse如何运行springboot项目》:本文主要介绍eclipse如何运行springboot项目问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目js录当在eclipse启动spring boot项目时出现问题解决办法1.通过cmd命令行2.在ecl

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.