NumPy库入门 北理工嵩天老师python数据分析与展示随堂笔记 (1)

本文主要是介绍NumPy库入门 北理工嵩天老师python数据分析与展示随堂笔记 (1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NumPy库入门 北理工嵩天老师python数据分析与展示随堂笔记

列表和数组的区别

列表:列表中每一个元素的数据类型是可以不同的
数组:要求每一个元素的数据类型是相同的

多维数据

二维数据:由多个一维数据构成,是一维数据组合形式
高维数据:高维数据仅利用最基本的二元关系展示数据间的复杂结构

数据维度的python表示

一维数据:列表和集合类型
[3.1398,3.1349,3.1376] 有序
{3.1398,3.1349,3.1376} 无序
二维数据:列表类型
[[3.1398,3.1349,3.1376],[3.1413,3.1404,3.1401]]
多维数据:列表类型

Numpy库

Numpy是一个开源的python科学计算基础库
1.一个强大的N维数组对象ndarry
2.广播功能函数
3.整合C/C++/Fortran代码的工具
4.线性代数、傅里叶变换、随机数生成等功能
NumPy是SciPy、Pandas等数据处理或科学计算库的基础

N维数组对象:ndarry
例:计算A2+B3,其中,A和B是一维数组

def pySum():a=[0,1,2,3,4]b=[9,8,7,6,5]c=[]for i in range(len(a)):c.append(a[i]**2+b[i]**3)return c
print(pySum())
[729, 513, 347, 225, 141]

上述方法我们还是将我们的工作点放在一个一个元素的运算上,这并不是一种科学计算的思想和方式。Numpy使用了另外一种思路。如下:

import numpy as np  #引入numpy模块
def npSum():a = np.array([0,1,2,3,4]) #生成一个数组b = np.array([9,8,7,6,5])c = a**2 + b**3   # '**' 数组中每个元素的次方return c
print(npSum())
[729 513 347 225 141]

N维数组对象:ndarry
1.数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据。
2.通过设置专门的数组对象,经过优化,可以提升这类应用的运算速度。
NumPy的底层实现是由C来完成的,在进行数组运算的时候,底层的C会提供非常高效和快速的运算性能。
观察:科学计算中,一个维度所有数据的类型往往相同。
数组对象采用相同的数据类型,有助于节省运算和存储空间

ndarray是一个多维数组对象,有两部分组成:

1.实际的数据
2.描述这些数据的元数据(数据维度、数据类型等)

ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始。
ndarray数组可以由非同质对象构成。其元素为对象类型。非同质ndarray无法有效发挥NumPy优势,尽量避免使用。

用np.array()生成一个ndarray数组(ndarray在程序中的别名是:array)

a=np.array([[0,1,2,3,4],[9,8,7,6,5]])
a
array([[0, 1, 2, 3, 4],[9, 8, 7, 6, 5]])
print(a) #打印时元素由空格分割
[[0 1 2 3 4][9 8 7 6 5]]

ndarray有两个基本的概念

轴(axis):保存数据的维度
秩(rank):轴的数量,即有几个维度

ndarray对象的属性

    属性                说明.ndim         秩,即轴的数量或维度的数量.shape        ndarray对象的尺度,对于矩阵,n行m列.size        ndarray对象元素的个数,相当于.shape中的n*m的值.dtype        ndarray对象的元素类型.itemsize     ndarray对象中每个元素的大小,以字节为单位

ndarray的元素类型(支持的数据类型可自行百度)

1.科学计算涉及数据较多,对存储和性能都有较高要求。
2.对元素类型精细定义,有助于NumPy合理使用存储空间并优化性能。
3.对元素类型精细定义,有助于程序员对程序规模有合理评估。

对比:Python语法仅支持整数、浮点数和负数3种类型

ndarray数组的创建和变换

ndarray数组的创建方法

1.从Python中的列表、元组等类型中创建ndarray数组x = np.array(list/tuple)x = np.array(list/tuple,dtype=np.float32) #指定元素的数据类型当np.array()不指定dtype时,NumPy根据数据情况关联一个dtype类型
2.使用NumPy中函数创建ndarray数组,如:arange,ones,zero等np.zeros()函数            说明np.arange(n)      类似range()函数,返回ndarray类型,元素从0到n-1np.ones(shape)    根据shape生成一个全1数组,shape是元组类型np.zeros(shape)    根据shape生成一个全0数组,shape是元组类型np.full(shape,val)  根据shape生成一个数组,每个元素值都是valnp.eye(n)        创建一个正方的n*n单位矩阵,对角线为1,其余为0np.ones_like(a)    根据数组a的形状生成一个全1的数组np.zeros_like(a)   根据数组a的形状生成一个全0的数组np.full_like(a,val) 根据数组a的形状状生成一个数组,每个元素值都是valnp.linspace(start,end,num)  根据起止数据及元素个数等间距地填充数据,形成数组,如果将参数                               endpoint置为False,end将不作为最后一个元素出现np.concatenate(a)   将两个或多个数组合并成一个新数组,a为一个元组3.从字节流(raw bytes)中创建ndarray数组。
4.从文件中读取特定格式,创建ndarray数组。

ndarray数组的维度变换

  方法              说明
.reshape(shape)    不改变数组元素,返回一个shape(shape是一个元组)形状的数                     组,原数组不变
.resize(shape)     与.reshape()功能一致,但修改原数组
.swapaxes(ax1,ax2)   将数组n个维度中的两个维度进行调换
.flatten()       对数组进行降维,返回折叠后的一维数组,原数组不变

ndarray数组向列表的转换

利用 .tolist() 方法即可实现转换
例如:
a=np.full((2,3,4),25)
a
array([[[25, 25, 25, 25],[25, 25, 25, 25],[25, 25, 25, 25]],[[25, 25, 25, 25],[25, 25, 25, 25],[25, 25, 25, 25]]])
b=a.tolist()
b
[[[25, 25, 25, 25], [25, 25, 25, 25], [25, 25, 25, 25]],[[25, 25, 25, 25], [25, 25, 25, 25], [25, 25, 25, 25]]]
a
array([[[25, 25, 25, 25],[25, 25, 25, 25],[25, 25, 25, 25]],[[25, 25, 25, 25],[25, 25, 25, 25],[25, 25, 25, 25]]])

ndarray 数组的操作

数组的索引和切片

索引:获取数组中特定位置元素的过程
切片:获取数组元素子集的过程

一维数组的索引和切片:与python的列表类似
a=np.array([9,8,7,6,5])
a[2]
7
a[1:4:2]  #切片  [起止编号:终止编号(不含):步长]
array([8, 6])
多维数组的索引和切片

索引:

a=np.arange(24).reshape((2,3,4))
a
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
a[1,2,3]
23
a[0,1,2]
6
a[-1,-2,-3]    # -1表示数组中最后一个元素值,-2表示倒数第二个元素值
17

切片:

a[:,1,-3]  #  :选取整个维度,此处表示第一维度的每个元素都要进行切片
array([ 5, 17])
a[:,1:3,:]  #  每个维度切片方法与一维数组相同
array([[[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[16, 17, 18, 19],[20, 21, 22, 23]]])
a[:,:,::2]     # 每个维度可以使用步长跳跃切片
array([[[ 0,  2],[ 4,  6],[ 8, 10]],[[12, 14],[16, 18],[20, 22]]])

ndarray数组的运算

1.数组与标量之间的运算作用于数组的每一个元素

NumPy一元函数

对ndarray中的数据执行元素级运算的函数
函数 说明
np.abs(x) np.fabs(x) 计算数组各元素(整数、浮点数)的绝对值
np.sqrt(x) 计算数组各元素的平方根
np.square(x) 计算数组各元素的平方
np.log(x) np.log10(x) np.log2(x) 计算各数组各元素的自然对数、10底对数等
np.ceil(x) np.floor(x) 计算数组各元素的ceiling值(向上取整)或floor值(向下取整)
np.rint(x) 计算数组各元素的四舍五入值
np.modf(x) 将数组各元素的小数和整数部分以两个独立数组形式返回

np.cos(x) np.cosh(x)
np.sin(x) np.sinh(x)    计算数组各元素的普通型和双曲型三角函数
np.tan(x) np.tanh(x)np.exp(x)            计算数组各元素的指数值
np.sign(x)           计算数组各元素的符号值,1(+),0,-1(-)
Numpy二元函数
函数                  说明
+ - * / **            两个数组各元素进行对应运算
np.maximum(x,y) np.fmax() 
np.minimum(x,y) np.fmin() 返回一个元素为两个数组对应位置中较大/较小的元素组成的数组
np.mod(x,y)           元素级的模运算
np.copysign(x,y)        将数组y中各元素值的符号赋值给数组x对应元素
> < >= <= == !=         算术比较,产生布尔型数组

这篇关于NumPy库入门 北理工嵩天老师python数据分析与展示随堂笔记 (1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749757

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python