[c++] 工厂模式 + cyberrt 组件加载器分析

2024-02-25 19:28

本文主要是介绍[c++] 工厂模式 + cyberrt 组件加载器分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用对象的时候,可以直接 new 一个,为什么还需要工厂模式 ?

工厂模式属于创建型设计模式,将对象的创建和使用进行解耦,对用户隐藏了创建逻辑。

个人感觉上边的表述并没有说清楚为什么需要使用工厂模式。因为使用 new 创建一个对象的时候,比如 new Object(x, x, x, x),对象创建逻辑在构造函数中实现,逻辑也对用户隐藏了,在一定程度上也实现了解耦。

为什么使用工厂模式 ?

生活中的工厂是生产商品的,一个工厂生产的商品往往有多个种类,比如手机代工厂,可能会代工多个品牌的手机。c++ 的工厂模式来源于生活,工厂模式常常应用于多态的场景,有一个基类,派生出多个类,创建这些类的时候,使用工厂模式就比较合适。

比如一个工厂代工了 3 个品牌的手机,apple, mi, oppo。如下图所示,我们往往会定义一个基类 Phone,在基类的基础上派生出 3 个子类:ApplePhone,MiPhone,OppoPhone。如果开发者在创建这些类的时候,需要分别 new ApplePhone(),new MiPhnoe(),new OppoPhone(),这样使用 new 的方式就不如使用工厂模式简单了。

1 简单工厂

手机工厂的例子,代码如下。

(1)一个抽象类,class Phone

(2)3 个派生类,ApplePhone,MiPhone, OppoPhone

(3)一个工厂类 PhoneFactory

可以看到,相对于直接使用 new 来创建对象,工厂类就是把产品的类型和类的对应关系这个逻辑给隐藏起来了,用户使用的时候只需要传一个手机类型就可以了。

#include <iostream>
#include <string>class Phone {
public:virtual ~Phone() {}virtual void CallUp() = 0;
};class ApplePhone : public Phone {
public:void CallUp() {std::cout << "ApplePhone call up" << std::endl;}
};class MiPhone : public Phone {
public:void CallUp() {std::cout << "MiPhone call up" << std::endl;}
};class OppoPhone : public Phone {
public:void CallUp() {std::cout << "OppoPhone call up" << std::endl;}
};enum PHONE_TYPE {APPLE,MI,OPPO
};class PhoneFactory {
public:Phone *CreatePhone(PHONE_TYPE type) {switch (type) {case APPLE:return new ApplePhone();case MI:return new MiPhone();case OPPO:return new OppoPhone();default:return nullptr;}}
};int main() {PhoneFactory phone_factory;Phone *apple = phone_factory.CreatePhone(APPLE);if (apple != nullptr) {apple->CallUp();delete apple;apple = nullptr;}Phone *mi = phone_factory.CreatePhone(MI);if (mi != nullptr) {mi->CallUp();delete mi;mi = nullptr;}Phone *oppo = phone_factory.CreatePhone(OPPO);if (oppo != nullptr) {oppo->CallUp();delete oppo;oppo = nullptr;}return 0;
}

2 工厂方法

简单工厂模式,如果生产的产品类型发生变化的时候需要改变工厂类,增减一个 if 分支,或者增减一个 case 分支 。有一个编码原则是 "对修改关闭,对扩展开发",简单工厂就违反了这条编码原则。因此,从简单工厂模式又延伸出了工厂方法模式。

工厂方法模式,需要增加一个工厂类。一个抽象工厂类 Factory,这个类派生出 3 个子类, AppleFactory,MiFactory,OppoFactory。

一个全局的表 map,这个 map 的 key 是商品的类型,value 是工厂类。这样的话,如果需要增加一种商品,只需要增加一个工厂类,然后在 map 中增加一项就可以了。

工厂类创建对象的时候,根据类型去 map 中查找对应的工厂,找到工厂之后就行生产。这样当增加商品的时候就彻底不需要修改工厂类了。把修改的范围缩小了,并且做了解耦。

多种设计模式中都使用了 map 来对代码进行解耦,并且做到对修改关闭,对扩展开方。比如策略模式,职责链模式。 

代码如下,代码中有一个全区的数据结构 factory_map,key 是手机类型,value 是工厂类。每定义一个工厂类,都可以通过宏 REGISTER_FACTORY 将工厂类注册到 factory_map 中。这样在使用的时候,只需要根据类型去 factory_map 中查找对应的工厂类,找到之后就可以生产。

#include <iostream>
#include <string>
#include <map>enum PHONE_TYPE {APPLE,MI,OPPO
};class Factory;
std::map<PHONE_TYPE, Factory *> factory_map;#define REGISTER_FACTORY(factory_type, class_name) \
struct ClassRegister##class_name { \ClassRegister##class_name() { \factory_map[factory_type] = new class_name(); \}; \
}; \
static struct ClassRegister##class_name factory_register##class_name;// 手机类
class Phone {
public:virtual ~Phone() {}virtual void CallUp() = 0;
};class ApplePhone : public Phone {
public:void CallUp() {std::cout << "ApplePhone call up" << std::endl;}
};class MiPhone : public Phone {
public:void CallUp() {std::cout << "MiPhone call up" << std::endl;}
};class OppoPhone : public Phone {
public:void CallUp() {std::cout << "OppoPhone call up" << std::endl;}
};// 工厂类
class Factory {
public:virtual ~Factory() {};virtual Phone *CreatePhone() = 0;
};class AppleFactory : public Factory {
public:Phone *CreatePhone() {return new ApplePhone();};
};
REGISTER_FACTORY(APPLE, AppleFactory);class MiFactory : public Factory {
public:Phone *CreatePhone() {return new MiPhone();};
};
REGISTER_FACTORY(MI, MiFactory);class OppoFactory : public Factory {
public:Phone *CreatePhone() {return new OppoPhone();};
};
REGISTER_FACTORY(OPPO, OppoFactory);class PhoneFactory {
public:Phone *CreatePhone(PHONE_TYPE type) {if (factory_map.count(type) > 0) {return factory_map[type]->CreatePhone();}return nullptr;}
};int main() {PhoneFactory phone_factory;Phone *apple = phone_factory.CreatePhone(APPLE);if (apple != nullptr) {apple->CallUp();delete apple;apple = nullptr;} else {std::cout << "apple is nulptr" << std::endl;}Phone *mi = phone_factory.CreatePhone(MI);if (mi != nullptr) {mi->CallUp();delete mi;mi = nullptr;}Phone *oppo = phone_factory.CreatePhone(OPPO);if (oppo != nullptr) {oppo->CallUp();delete oppo;oppo = nullptr;}return 0;
}

3 cyberrt 中组件加载器

cyberrt 中提供了两个基类 TimerComponent 和 Component。用户可以根据自己的业务需求,是定时触发还是事件触发来决定基于 TimerComponent 开发还是基于 Component 开发。比如自动驾驶系统中的传感器组件(camera,lidar,radar) 一般是定时组件,定时将传感器数据向外发布;感知,预测,决策,控制模块一般是事件触发,一般基于 Component 开发。如下图所示,TimerComponent 和 Component 由 ComponentBase 派生出来,这 3 个类都是属于架构层的类;上层的 camera,lidar,radar,perception,prediction 等组件属于业务层。

用户开发的软件最后会编译成一个动态库,动态库的加载和运行通过 cyberrt 中的组件加载器来进行。组件加载器的实现使用了工厂模式,并且使用的是工厂方法模式。

3.1 类加载

cyberrt 加载运行组件的时候,首先要加载用户的动态库。动态库的加载通过类 ClassLoader 来完成。

(1)动态库加载函数 dlopen()

底层动态库的加载是通过函数 dlopen() 完成。dlopen() 可以直接传动态库的名字,比如 libcamera.so,也可以传动态库的路径,比如 /ads/lib/libcamera.so。传动态库名字的时候,dlopen() 查找动态库的时候会根据系统的配置来查找,查找的路径有以下 5 个,按优先级先后顺序是 rpath > LD_LIBRARY_PATH > /etc/ls.so.cache > /lib > /usr/lib。

① rpath

在编译的时候可以加编译选项,比如  -Wl,-rpath,/ads/lib,这样 /ads/lib 的路径就会保存到动态库中。

② LD_LIBRARY_PATH

环境变量,可以配置动态库的路径。

③ /etc/ls.so.cache

这个缓存中的路径,可以通过 ldconfig -p 查看缓存中的动态库。

如果想要向这个缓冲区中配置路径,可以增加一个 conf 文件放到目录 /etc/ld.so.conf.d/ 中,然后再执行 ldconfig,就能通过 ldconfig -p 查看到自己的路径。

(2)保存动态库的全局数据结构

动态库加载之后要保存到一个数据结构中,数据结构是一个 vector,vector 中的元素是 std::pair 数据,pair 的 key 是动态库的路径,value 是表示加载动态库的类 SharedLibrary。

// using LibPathSharedLibVector =
//    std::vector<std::pair<std::string, SharedLibraryPtr>>;
LibPathSharedLibVector& GetLibPathSharedLibVector() {static LibPathSharedLibVector instance;return instance;
}

3.2 创建对象

(1)工厂类

用户开发的组件都要使用下边这个宏进行注册, name 是用户类的类名。在这个宏中最后会通过 RegisterClass() 创建一个工厂类,工厂类放到一个全局单例的 map 里,key 是 classname, value 是工厂类。

#define CYBER_REGISTER_COMPONENT(name) \CLASS_LOADER_REGISTER_CLASS(name, apollo::cyber::ComponentBase)

创建对象的时候是在函数 CreateObj() 中完成,对于没有形参的构造函数,使用 new 创建对象的时候,类名后边也可以不加括号。

template <typename ClassObject, typename Base>
class ClassFactory : public AbstractClassFactory<Base> {public:ClassFactory(const std::string& class_name,const std::string& base_class_name): AbstractClassFactory<Base>(class_name, base_class_name) {}Base* CreateObj() const { return new ClassObject; }
};

(2)工厂类创建

工厂类创建的在宏 CLASS_LOADER_REGISTER_CLASS_INTERNAL 中实现的。第 2 节工厂方法模式中,自己写的代码就是参考这个宏实现的。这里边有一个技巧,就是定义一个结构体,然后声明一个静态的结构体对象,这样就会调用结构体的构造函数,在构造函数中完成工厂类的注册。

#define CLASS_LOADER_REGISTER_CLASS_INTERNAL(Derived, Base, UniqueID)    \namespace {                                                            \struct ProxyType##UniqueID {                                           \ProxyType##UniqueID() {                                              \vcl::class_loader::utility::RegisterClass<Derived, Base>(#Derived, \#Base);   \}                                                                    \};                                                                     \static ProxyType##UniqueID g_register_class_##UniqueID;                \}

这篇关于[c++] 工厂模式 + cyberrt 组件加载器分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746459

相关文章

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

SpringQuartz定时任务核心组件JobDetail与Trigger配置

《SpringQuartz定时任务核心组件JobDetail与Trigger配置》Spring框架与Quartz调度器的集成提供了强大而灵活的定时任务解决方案,本文主要介绍了SpringQuartz定... 目录引言一、Spring Quartz基础架构1.1 核心组件概述1.2 Spring集成优势二、J

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java