使用决策树算法预测隐形眼镜类型

2024-02-25 11:36

本文主要是介绍使用决策树算法预测隐形眼镜类型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

谷歌笔记本(可选)

编写算法:决策树

 准备数据:拆分数据集

测试算法:构造注解树

使用算法:预测隐形眼镜类型


谷歌笔记本(可选)

from google.colab import drive
drive.mount("/content/drive")

output

Mounted at /content/drive

编写算法:决策树

from math import log
import operatordef calcShannonEnt(dataSet):numEntries = len(dataSet)labelCounts = {}for featVec in dataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0for key in labelCounts:prob = float(labelCounts[key]) / numEntriesshannonEnt -= prob * log(prob, 2)return shannonEnt

这段代码是用于计算给定数据集的香农熵(Shannon Entropy)的Python实现。香农熵在信息论中是一个度量不确定性或信息混乱程度的重要概念,在机器学习领域,特别是在决策树算法中,用于评估特征对于划分数据集纯度的贡献。

1. `calcShannonEnt`函数接收一个名为dataSet的数据集作为输入,该数据集通常是由特征向量构成的列表,每个特征向量最后一个元素为其对应的类别标签。

2. 首先统计数据集中样本的数量:`numEntries = len(dataSet)`。

3. 初始化一个字典`labelCounts`,用于存储各类别标签出现的次数。通过遍历整个数据集,对每一个特征向量(featVec),提取其类别标签(currentLabel),并将其计数加到字典对应键值上。

4. 计算香农熵:初始化`shannonEnt`为0,然后遍历`labelCounts`字典,对于每个类别标签key,计算其概率(通过其出现次数除以总样本数得到),然后用公式 `- prob * log(prob, 2)` 计算其熵值,并累加到`shannonEnt`上。这里的log是以2为底的对数,因为熵的单位通常是比特(bits)。

5. 最后返回计算得出的香农熵值`shannonEnt`。

总结:这个函数的主要目的是衡量给定数据集中各类别的不确定性或分布均匀性,熵值越大表示不确定性越高,越需要进行划分以提高模型的纯度。

def splitDataSet(dataSet, axis, value):retDataSet = []for featVec in dataSet:if featVec[axis] == value:reducedFeatVec = featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])retDataSet.append(reducedFeatVec)return retDataSet
def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1   # 2baseEntropy = calcShannonEnt(dataSet)  # 0.9709505944546686bestInfoGain = 0bestFeature = -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif(infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature

这段代码是用于选择数据集中最佳特征进行划分的函数,通常在决策树构建过程中使用。其主要目的是通过计算信息增益(Information Gain)来确定最优分割特征。

1. numFeatures 计算特征的数量,等于数据集中每个样本向量元素的个数减1(因为最后一个元素通常是类别标签)。

2. 初始化基本熵(baseEntropy),通过调用之前定义的 calcShannonEnt(dataSet) 函数计算整个数据集的香农熵。

3. 初始化最佳信息增益(bestInfoGain)为0,以及最佳特征索引(bestFeature)为-1,分别用于存储找到的最大信息增益和对应的特征编号。

4. 遍历所有特征(i从0到numFeatures-1): 

        a. 通过列表推导式提取出当前特征i的所有取值,存入featList。

        b. 将featList中的唯一值转化为一个集合(uniqueVals),这将作为当前特征可能的划分依据。

        c. 对于uniqueVals中的每一个value,利用splitDataSet函数根据特征i和该value划分数据集得到subDataSet。

        d. 计算划分后子数据集的概率(prob),即子数据集大小除以原数据集大小。

        e. 计算划分后的子数据集的香农熵,并乘以对应概率得到加权平均熵(newEntropy)。

        f. 使用公式计算信息增益:infoGain = baseEntropy - newEntropy

        g. 如果当前信息增益大于已记录的最佳信息增益,则更新bestInfoGain和bestFeature。

5. 循环结束后返回最佳特征索引(bestFeature)。这个特征就是当前能带来最大信息增益的特征,用于下一步决策树节点的划分。

def majorityCnt(classList):classCount={}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]
def createTree(dataSet, labels):classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList):return classList[0]if len(dataSet[0]) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}subLabels = labels[:]del(subLabels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)return myTree

这段代码是用于创建决策树的函数,名为`createTree`。它递归地构建决策树直到满足停止条件。

1. 首先计算数据集classList中最后一个元素(类别标签)的唯一值数量,如果所有样本的类别标签都相同,则说明当前节点下的样本已经足够纯,无需继续划分,直接返回这个唯一的类别标签作为叶子节点的预测结果。

2. 检查是否所有特征已经被用尽(即每个样本只有一个特征),如果是,则返回该节点下出现次数最多的类别标签(通过调用`majorityCnt(classList)`实现)。

3. 使用`chooseBestFeatureToSplit`函数选择最优特征进行划分,并获取其对应的标签名称(bestFeatLabel)。

4. 初始化一个新的字典结构myTree,以表示当前节点以及其子节点。字典的键为最优特征的标签,值为另一个字典,后续将填充各个特征取值对应的子树。

5. 创建一个子标签列表subLabels,它是原标签列表labels的一个副本,然后删除最优特征对应的标签,这样在构建子节点时不会重复考虑此特征。

6. 提取数据集中最优特征的所有取值并转化为一个集合uniqueVals。

7. 遍历uniqueVals中的每一个特征取值value:
   a. 调用`splitDataSet(dataSet, bestFeat, value)`对数据集进行划分,得到该特征取值对应的新子数据集。
   b. 以最优特征的取值value作为键,递归调用`createTree`生成对应的子树,并将其添加到myTree[bestFeatLabel]中。

8. 当所有子树构造完成后,返回整个决策树结构myTree。整个过程按照信息增益最大原则自顶向下构建决策树,直至达到终止条件。

 

 准备数据:拆分数据集

fr = open('/content/drive/MyDrive/MachineLearning/机器学习/决策树/使用决策树预测隐形眼镜类型/lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = createTree(lenses, lensesLabels)
lensesTree, lensesLabels

output

({'tearRate': {'normal': {'astigmatic': {'no': {'age': {'presbyopic': {'prescript': {'myope': 'no lenses','hyper': 'soft'}},'pre': 'soft','young': 'soft'}},'yes': {'prescript': {'myope': 'hard','hyper': {'age': {'presbyopic': 'no lenses','pre': 'no lenses','young': 'hard'}}}}}},'reduced': 'no lenses'}},['age', 'prescript', 'astigmatic', 'tearRate'])

测试算法:构造注解树

import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',xytext=centerPt, textcoords='axes fraction',va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):numLeafs = 0firstStr = list(myTree.keys())[0]secondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':numLeafs += getNumLeafs(secondDict[key])else:numLeafs += 1return numLeafs
def getTreeDepth(myTree):maxDepth = 0firstStr = list(myTree.keys())[0]secondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__=='dict':thisDepth = 1 + getTreeDepth(secondDict[key])else:thisDepth = 1if thisDepth > maxDepth:maxDepth = thisDepthreturn maxDepth
def plotMidText(cntrPt, parentPt, txtString):xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):numLeafs = getNumLeafs(myTree)depth = getTreeDepth(myTree)firstStr = list(myTree.keys())[0]cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)plotMidText(cntrPt, parentPt, nodeTxt)plotNode(firstStr, cntrPt, parentPt, decisionNode)secondDict = myTree[firstStr]plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalDfor key in secondDict.keys():if type(secondDict[key]).__name__=='dict':plotTree(secondDict[key],cntrPt,str(key))else:plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalWplotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):fig = plt.figure(1, facecolor='white')fig.clf()axprops = dict(xticks=[], yticks=[])createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)plotTree.totalW = float(getNumLeafs(inTree))plotTree.totalD = float(getTreeDepth(inTree))plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;plotTree(inTree, (0.5,1.0), '')plt.show()
createPlot(lensesTree)

output

使用算法:预测隐形眼镜类型

def classify(inputTree, featLabels, testVec):firstStr = list(inputTree.keys())[0]secondDict = inputTree[firstStr]featIndex = featLabels.index(firstStr)for key in secondDict.keys():if testVec[featIndex] == key:if type(secondDict[key]).__name__ == 'dict':classLabel = classify(secondDict[key], featLabels, testVec)else:classLabel = secondDict[key]return classLabel
classify(lensesTree, lensesLabels, ['pre', 'myope', 'yes', 'normal'])

output

'hard'

这篇关于使用决策树算法预测隐形眼镜类型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745352

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解