矩阵的导数运算(理解分子布局、分母布局)

2024-02-25 07:52

本文主要是介绍矩阵的导数运算(理解分子布局、分母布局),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵的导数运算(理解分子布局、分母布局)

1、分子布局和分母布局

请思考这样一个问题,一个维度为m的向量y对一个标量x的求导,那么结果也是一个m维的向量,那么这个结果向量是行向量,还是列向量呢?

答案是:行向量或者列向量皆可! 求导的本质只是把标量求导的结果排列起来,至于是按行排列还是按列排列都是可以的。但是这样也有问题,在我们机器学习算法优化过程中,如果行向量或者列向量随便写,那么结果就不唯一,乱套了。

为了解决矩阵向量求导的结果不唯一,我们引入求导布局。最基本的求导布局有两个:分子布局(numerator layout)和分母布局(denominator layout )。

  • 对于分子布局来说,我们求导结果的维度以分子为主

  • 对于分母布局来说,我们求导结果的维度以分母为主

2、标量方程对向量的导数

标量方程中的未知量是标量,而不是矢量或矩阵。

通常情况下,标量方程可以是各种类型的代数方程,包括线性方程、二次方程、多项式方程等。这些方程中的未知量都是标量,通常表示为一个变量,例如 x、y、z 等。
已知标量方程 f ( y ) = f ( y 1 , y 2 , . . . , y m ) ,我们求解标量方程 f ( y ) 对向量 y → = ( y 1 y 2 ⋮ y m ) 的导数 已知标量方程f(y) = f(y_1,y_2,...,y_m),我们求解标量方程f(y) 对向量\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right)的导数 \\ 已知标量方程f(y)=f(y1,y2,...,ym),我们求解标量方程f(y)对向量y = y1y2ym 的导数
在这里插入图片描述

分母为向量y,维度为m×1,求导结果的行数和分母相同,都为m,因此为分母布局。

分子为标量,维度为1×1,求导结果的行数和分子相同,都为1,因此为分子布局。

具体案例如下:
已知标量方程 f ( y ) = y 1 2 + y 2 2 ,我们求解标量方程 f ( y ) 对向量 y → = ( y 1 y 2 ) 的导数 按照分母布局 ( 行数和分母相同 ) ,则 ∂ f ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ) = ( 2 y 1 2 y 2 ) 按照分子布局 ( 行数和分子相同 ) ,则 ∂ f ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 , ∂ f ( y → ) ∂ y 2 ) = ( 2 y 1 , 2 y 2 ) 已知标量方程f(y) = y_1^2 + y_2^2,我们求解标量方程f(y) 对向量\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \end{matrix} \right)的导数 \\ 按照分母布局(行数和分母相同),则\frac{\partial{f(\overrightarrow{y})}}{\partial{\overrightarrow{y}}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \end{matrix} \right)=\left( \begin{matrix} 2y_1 \\ 2y_2 \\ \end{matrix} \right)\\ 按照分子布局(行数和分子相同),则\frac{\partial{f(\overrightarrow{y})}}{\partial{\overrightarrow{y}}}=(\frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}},\frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}})=(2y_1, 2y_2) 已知标量方程f(y)=y12+y22,我们求解标量方程f(y)对向量y =(y1y2)的导数按照分母布局(行数和分母相同),则y f(y )=(y1f(y )y2f(y ))=(2y12y2)按照分子布局(行数和分子相同),则y f(y )=(y1f(y ),y2f(y ))=(2y1,2y2)
注意:分子布局结果和分母布局结果互为转置。

3、向量方程对向量的导数

3.1 公式

已知 y → = ( y 1 y 2 ⋮ y m ) ,求向量方程 f → ( y → ) = ( f 1 ( y → ) f 2 ( y → ) ⋮ f n ( y → ) ) 对 y → 的导数 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),求向量方程\overrightarrow{f}(\overrightarrow{y})=\left( \begin{matrix} f_1(\overrightarrow{y}) \\ f_2(\overrightarrow{y}) \\ \vdots \\ f_n(\overrightarrow{y}) \\ \end{matrix} \right)对\overrightarrow{y}的导数\\ 已知y = y1y2ym ,求向量方程f (y )= f1(y )f2(y )fn(y ) y 的导数

利用分母布局:
∂ f → ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ⋮ ∂ f ( y → ) ∂ y m ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 1 ⋯ ∂ f n ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ∂ f 2 ( y → ) ∂ y 2 ⋯ ∂ f n ( y → ) ∂ y 2 ⋮ ⋮ ⋱ ⋮ ∂ f 1 ( y → ) ∂ y m ∂ f 2 ( y → ) ∂ y m ⋯ ∂ f n ( y → ) ∂ y m ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \vdots \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \cdots &\frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_1}}\\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_m}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_m}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right)\\ y f (y )= y1f(y )y2f(y )ymf(y ) = y1f1(y )y2f1(y )ymf1(y )y1f2(y )y2f2(y )ymf2(y )y1fn(y )y2fn(y )ymfn(y )
利用分子布局:

∂ f → ( y → ) ∂ y → = ( ∂ f 1 ( y → ) ∂ y → ∂ f 2 ( y → ) ∂ y → ⋮ ∂ f n ( y → ) ∂ y → ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ⋯ ∂ f 1 ( y → ) ∂ y m ∂ f 2 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 2 ⋯ ∂ f 2 ( y → ) ∂ y m ⋮ ⋮ ⋱ ⋮ ∂ f n ( y → ) ∂ y 1 ∂ f n ( y → ) ∂ y 2 ⋯ ∂ f n ( y → ) ∂ y m ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \frac{\partial{f_2(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \vdots \\ \frac{\partial{f_n(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \cdots &\frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_m}}\\ \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right) y f (y )= y f1(y )y f2(y )y fn(y ) = y1f1(y )y1f2(y )y1fn(y )y2f1(y )y2f2(y )y2fn(y )ymf1(y )ymf2(y )ymfn(y )

3.2 具体示例

已知 y → = ( y 1 y 2 y 3 ) ,求向量方程 f → ( y → ) = ( f 1 ( y → ) f 2 ( y → ) ) = ( y 1 2 + y 2 2 + y 3 y 3 2 + 2 y 1 ) 对 y → 的导数 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ y_{3} \\ \end{matrix} \right),求向量方程\overrightarrow{f}(\overrightarrow{y})=\left( \begin{matrix} f_1(\overrightarrow{y}) \\ f_2(\overrightarrow{y}) \\ \end{matrix} \right)=\left( \begin{matrix} y_1^2+y_2^2+y_3 \\ y_3^2+2y_1 \\ \end{matrix} \right) 对\overrightarrow{y}的导数\\ 已知y = y1y2y3 ,求向量方程f (y )=(f1(y )f2(y ))=(y12+y22+y3y32+2y1)y 的导数

我们按照分母布局来求(得到结果为m×n的矩阵,即3×2):
∂ f → ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ∂ f ( y → ) ∂ y 3 ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ∂ f 2 ( y → ) ∂ y 2 ∂ f 1 ( y → ) ∂ y 3 ∂ f 2 ( y → ) ∂ y 3 ) = ( 2 y 1 2 2 y 2 0 1 2 y 3 ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_3}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} & \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_3}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_3}} & \\ \end{matrix} \right)=\left( \begin{matrix} 2y_1 & 2 & \\ 2y_2 & 0 & \\ 1 & 2y_3 & \\ \end{matrix} \right)\\ y f (y )= y1f(y )y2f(y )y3f(y ) = y1f1(y )y2f1(y )y3f1(y )y1f2(y )y2f2(y )y3f2(y ) = 2y12y21202y3

3.3 常用特例

常用特例1:
已知 y → = ( y 1 y 2 ⋮ y m ) ,方阵 A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) , 证明 ∂ A y → ∂ y → = A T , ∂ y T → A ∂ y → = A ( 分母布局 ) 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),方阵A=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right),证明\frac{\partial{A\overrightarrow{y}}}{\partial\overrightarrow{y}}=A^T, \frac{\partial{\overrightarrow{y^T}}A}{\partial\overrightarrow{y}}=A(分母布局) 已知y = y1y2ym ,方阵A= a11a21am1a12a22am2a1ma2mamm ,证明y Ay =ATy yT A=A(分母布局)
我们使用分母布局来求
A y → = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) . ( y 1 y 2 ⋮ y m ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ⋮ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ) 按照分母布局,我们可以得到: ∂ A y → ∂ y → = ( ∂ A y → ∂ y 1 ∂ A y → ∂ y 2 ⋮ ∂ A y → ∂ y m ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y 1 a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y 1 ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y 1 a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y 2 a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y 2 ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y 2 ⋮ ⋮ ⋱ ⋮ a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y m a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y m ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y m ) = ( a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋮ a 1 m a 2 m ⋯ a m m ) = A T A\overrightarrow{y}=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right). \left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right)=\left( \begin{matrix} a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m\\ a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m\\ \vdots \\ a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m\\ \end{matrix} \right)\\ 按照分母布局,我们可以得到:\\ \frac{\partial{A\overrightarrow{y}}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{A\overrightarrow{y}}}{\partial{y_1}} \\ \frac{\partial{A\overrightarrow{y}}}{\partial{y_2}} \\ \vdots \\ \frac{\partial{A\overrightarrow{y}}}{\partial{y_m}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_1}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_1}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_1}} \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_2}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_2}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_m}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_m}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_m}} \\ \end{matrix} \right)\\ =\left( \begin{matrix} a_{11} & a_{21} & \cdots & a_{m1}\\ a_{12} & a_{22} & \cdots & a_{m2}\\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{mm}\\ \end{matrix} \right)=A^T\\ Ay = a11a21am1a12a22am2a1ma2mamm . y1y2ym = a11y1+a12y2++a1myma21y1+a22y2++a2mymam1y1+am2y2++ammym 按照分母布局,我们可以得到:y Ay = y1Ay y2Ay ymAy = y1a11y1+a12y2++a1mymy2a11y1+a12y2++a1mymyma11y1+a12y2++a1mymy1a21y1+a22y2++a2mymy2a21y1+a22y2++a2mymyma21y1+a22y2++a2mymy1am1y1+am2y2++ammymy2am1y1+am2y2++ammymymam1y1+am2y2++ammym = a11a12a1ma21a22a2mam1am2amm =AT

同理,我们知道 y T → A = ( y 1 , y 2 , ⋯ , y m ) . ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) = ( a 11 y 1 + a 21 y 2 + ⋯ + a m 1 y m a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ⋮ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ) ∂ y T → A ∂ y → = ( a 11 y 1 + a 21 y 2 + ⋯ + a m 1 y m ∂ y 1 a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y 1 ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y 1 a 11 y 1 + a 12 y 2 + ⋯ + a m 1 y m ∂ y 2 a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y 2 ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y 2 ⋮ ⋮ ⋱ ⋮ a 11 y 1 + a 12 y 2 + ⋯ + a m 1 y m ∂ y m a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y m ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y m ) = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) = A 同理,我们知道\overrightarrow{y^T}A=(y_1,y_2,\cdots,y_m).\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right)=\left( \begin{matrix} a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m\\ a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m\\ \vdots \\ a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m\\ \end{matrix} \right)\\ \frac{\partial{\overrightarrow{y^T}}A}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m}{\partial{y_1}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_1}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_1}} \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{m1}y_m}{\partial{y_2}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_2}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{m1}y_m}{\partial{y_m}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_m}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_m}} \\ \end{matrix} \right)\\ =\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right)=A 同理,我们知道yT A=(y1,y2,,ym). a11a21am1a12a22am2a1ma2mamm = a11y1+a21y2++am1yma12y1+a22y2++am2yma1my1+a2my2++ammym y yT A= y1a11y1+a21y2++am1ymy2a11y1+a12y2++am1ymyma11y1+a12y2++am1ymy1a12y1+a22y2++am2ymy2a12y1+a22y2++am2ymyma12y1+a22y2++am2ymy1a1my1+a2my2++ammymy2a1my1+a2my2++ammymyma1my1+a2my2++ammym = a11a21am1a12a22am2a1ma2mamm =A

常用特例2:
已知 y → = ( y 1 y 2 ⋮ y m ) ,方阵 A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) , 证明 ∂ y → T A y → ∂ y → = A y → + A T y → ( 分母布局 ) 另外,当 A 对称时, A T = A , 左式 = 2 A y → 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),方阵A=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right),证明\frac{\partial{\overrightarrow{y}^TA\overrightarrow{y}}}{\partial\overrightarrow{y}}=A\overrightarrow{y} + A^T\overrightarrow{y}(分母布局)\\ 另外,当A对称时,A^T=A,左式=2A\overrightarrow{y} 已知y = y1y2ym ,方阵A= a11a21am1a12a22am2a1ma2mamm ,证明y y TAy =Ay +ATy (分母布局)另外,当A对称时,AT=A,左式=2Ay
我们A为2阶方阵,那么:

在这里插入图片描述

我们再利用分母布局:

在这里插入图片描述

3.4 利用常用特例求解线性回归的解析解

线性回归可以用 y = X w + b 进行表示 我们将偏置 b 合并到参数 w 中,合并⽅法是在包含所有参数的矩阵中附加⼀列 那么,线性回归的代价函数可以表示为: E w = ( y − X w ) T ( y − X w ) = ( y T − w T X ) ( y − X w ) = y T y − y T X w − w T X T y + w T X T X w 因此 ∂ E w ∂ W = ∂ ( y T y ) ∂ w − ∂ ( y T X w ) ∂ w − ∂ ( w T X T y ) ∂ w + ∂ ( w T X T X w ) ∂ w = 0 − X T y ( 常用特例 1 ) − X T y ( 常用特例 1 ) + 2 X T X w ( 常用特例 2 , X T X 为对称阵 ) = 2 X T X w − 2 X T y 我们将损失关于 w 的导数设置为 0 ,那么可以得到解析解: w = ( X T X ) − 1 X T y 线性回归可以用y=Xw+b进行表示\\ 我们将偏置b合并到参数w中,合并⽅法是在包含所有参数的矩阵中附加⼀列\\ 那么,线性回归的代价函数可以表示为:\\ E_w=(y-Xw)^T(y-Xw) \\ =(y^T-w^TX)(y-Xw) \\ =y^Ty-y^TXw-w^TX^Ty+w^TX^TXw \\ 因此\frac{\partial{E_w}}{\partial{W}}= \frac{\partial{(y^Ty)}}{\partial{w}}- \frac{\partial{(y^TXw)}}{\partial{w}}- \frac{\partial{(w^TX^Ty)}}{\partial{w}}+ \frac{\partial{(w^TX^TXw)}}{\partial{w}}\\ =0-X^Ty(常用特例1)-X^Ty(常用特例1)+2X^TXw(常用特例2,X^TX为对称阵)\\ =2X^TXw-2X^Ty \\ 我们将损失关于w的导数设置为0,那么可以得到解析解:w=(X^TX)^{-1}X^Ty 线性回归可以用y=Xw+b进行表示我们将偏置b合并到参数w中,合并法是在包含所有参数的矩阵中附加那么,线性回归的代价函数可以表示为:Ew=(yXw)T(yXw)=(yTwTX)(yXw)=yTyyTXwwTXTy+wTXTXw因此WEw=w(yTy)w(yTXw)w(wTXTy)+w(wTXTXw)=0XTy(常用特例1)XTy(常用特例1)+2XTXw(常用特例2XTX为对称阵)=2XTXw2XTy我们将损失关于w的导数设置为0,那么可以得到解析解:w=(XTX)1XTy

4、向量求导的链式法则

举例证明链式求导法则为: ∂ J ∂ u → = ∂ y → ( u → ) ∂ u → . ∂ J ∂ y → ( u → ) 举例证明链式求导法则为:\frac{\partial{J}}{\partial{\overrightarrow{u}}}=\frac{\partial{\overrightarrow{y}(\overrightarrow{u})}}{\partial{\overrightarrow{u}}}.\frac{\partial{J}}{\partial{\overrightarrow{y}(\overrightarrow{u})}} 举例证明链式求导法则为:u J=u y (u ).y (u )J

在这里插入图片描述

这篇关于矩阵的导数运算(理解分子布局、分母布局)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744852

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分