使用 Hugging Face 微调 Gemma 模型

2024-02-25 07:52

本文主要是介绍使用 Hugging Face 微调 Gemma 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来自 Google Deepmind 开放权重的语言模型 Gemma 现已通过 Hugging Face 面向更广泛的开源社区开放。该模型提供了两个规模的版本:2B 和 7B 参数,包括预训练版本和经过指令调优的版本。它在 Hugging Face 平台上提供支持,可在 Vertex Model Garden 和 Google Kubernetes Engine 中轻松部署和微调。

d4ae0ad030f493043d79609642d69bdd.png

Gemma 模型系列同样非常适合利用 Colab 提供的免费 GPU 资源进行原型设计和实验。在这篇文章中,我们将简要介绍如何在 GPU 和 Cloud TPU 上,使用 Hugging Face Transformers 和 PEFT 库对 Gemma 模型进行参数高效微调(PEFT),这对想要在自己的数据集上微调 Gemma 模型的用户尤其有用。

为什么选择 PEFT?

dfcf51a43368d7a648120a024efb5be7.png

即使对于中等大小的语言模型,常规的全参数训练也会非常占用内存和计算资源。对于依赖公共计算平台进行学习和实验的用户来说,如 Colab 或 Kaggle,成本可能过高。另一方面,对于企业用户来说,调整这些模型以适应不同领域的成本也是一个需要优化的重要指标。参数高效微调(PEFT)是一种以低成本实现这一目标的流行方法。

了解更多 PEFT 请参考文章:🤗 PEFT: 在低资源硬件上对十亿规模模型进行参数高效微调

在 GPU 和 TPU 上使用 PyTorch 进行 Gemma 模型的高效微调

在 Hugging Face 的 transformers 中,Gemma 模型已针对 PyTorch 和 PyTorch/XLA 进行了优化,使得无论是 TPU 还是 GPU 用户都可以根据需要轻松地访问和试验 Gemma 模型。随着 Gemma 的发布,我们还改善了 PyTorch/XLA 在 Hugging Face 上的 FSDP 使用体验。这种 FSDP 通过 SPMD 的集成还让其他 Hugging Face 模型能够通过 PyTorch/XLA 利用 TPU 加速。本文将重点介绍 Gemma 模型的 PEFT 微调,特别是低秩适应(LoRA)。

想要深入了解 LoRA 技术,我们推荐阅读 Lialin 等人的 "Scaling Down to Scale Up" 以及 Belkada 等人的 精彩文章。

使用低秩适应技术 (LoRA) 对大语言模型进行微调

低秩适应(LoRA)是一种用于大语言模型(LLM)的参数高效微调技术。它只针对模型参数的一小部分进行微调,通过冻结原始模型并只训练被分解为低秩矩阵的适配器层。PEFT 库 提供了一个简易的抽象,允许用户选择应用适配器权重的模型层。

from peft import LoraConfiglora_config = LoraConfig(r=8,target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],task_type="CAUSAL_LM",
)

在这个代码片段中,我们将所有的 nn.Linear 层视为要适应的目标层。

在以下示例中,我们将利用 QLoRA,出自 Dettmers 等人,通过 4 位精度量化基础模型,以实现更高的内存效率微调协议。通过首先在您的环境中安装 bitsandbytes 库,然后在加载模型时传递 BitsAndBytesConfig 对象,即可加载具有 QLoRA 的模型。

开始之前

fa9a7043c3289b22365b786fef165f34.png

要访问 Gemma 模型文件,用户需先填写 同意表格。

我们继续。

微调 Gemma,让它学会并生成一些“名言金句”

假设您已提交同意表格,您可以从 Hugging Face Hub 获取模型文件。

地址:https://hf.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b

我们首先下载模型和分词器 (tokenizer),其中包含了一个 BitsAndBytesConfig 用于仅限权重的量化。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfigmodel_id = "google/gemma-2b"
bnb_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.bfloat16
)tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ['HF_TOKEN'])
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}, token=os.environ['HF_TOKEN'])

在开始微调前,我们先使用一个相当熟知的名言来测试一下 Gemma 模型:

text = "Quote: Imagination is more"
device = "cuda:0"
inputs = tokenizer(text, return_tensors="pt").to(device)outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

模型完成了一个合理的补全,尽管有一些额外的 token:

Quote: Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world.-Albert EinsteinI

但这并不完全是我们希望看到的答案格式。我们将尝试通过微调让模型学会以我们期望的格式来产生答案:

Quote: Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world.Author: Albert Einstein

首先,我们选择一个英文“名人名言”数据集:

from datasets import load_datasetdata = load_dataset("Abirate/english_quotes")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)

接下来,我们使用上述 LoRA 配置对模型进行微调:

import transformers
from trl import SFTTrainerdef formatting_func(example):text = f"Quote: {example['quote'][0]}\nAuthor: {example['author'][0]}"return [text]trainer = SFTTrainer(model=model,train_dataset=data["train"],args=transformers.TrainingArguments(per_device_train_batch_size=1,gradient_accumulation_steps=4,warmup_steps=2,max_steps=10,learning_rate=2e-4,fp16=True,logging_steps=1,output_dir="outputs",optim="paged_adamw_8bit"),peft_config=lora_config,formatting_func=formatting_func,
)
trainer.train()

最终,我们再次使用先前的提示词,来测试模型:

text = "Quote: Imagination is"
device = "cuda:0"
inputs = tokenizer(text, return_tensors="pt").to(device)outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

这次,我们得到了我们期待的答案格式:

Quote: Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world.Author: Albert Einstein

名言:想象力比知识更重要,因为知识是有限的,而想象力概括着世界的一切.

作者:阿尔伯特·爱因斯坦

在 TPU 环境下微调,可通过 SPMD 上的 FSDP 加速

如前所述,Hugging Face transformers 现支持 PyTorch/XLA 的最新 FSDP 实现,这可以显著加快微调速度。只需在 transformers.Trainer 中添加 FSDP 配置即可启用此功能:

from transformers import DataCollatorForLanguageModeling, Trainer, TrainingArguments# Set up the FSDP config. To enable FSDP via SPMD, set xla_fsdp_v2 to True.
fsdp_config = {"fsdp_transformer_layer_cls_to_wrap": ["GemmaDecoderLayer"],"xla": True,"xla_fsdp_v2": True,"xla_fsdp_grad_ckpt": True
}# Finally, set up the trainer and train the model.
trainer = Trainer(model=model,train_dataset=data,args=TrainingArguments(per_device_train_batch_size=64,  # This is actually the global batch size for SPMD.num_train_epochs=100,max_steps=-1,output_dir="./output",optim="adafactor",logging_steps=1,dataloader_drop_last = True,  # Required for SPMD.fsdp="full_shard",fsdp_config=fsdp_config,),data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()

下一步

通过这个从源笔记本改编的简单示例,我们展示了应用于 Gemma 模型的 LoRA 微调方法。完整的 GPU colab 在 这里 可以找到,完整的 TPU 脚本在 这里可以找到。我们对于这一最新加入我们开源生态系统的成员所带来的无限研究和学习机会感到兴奋。我们鼓励用户也浏览 Gemma 文档 和我们的 发布博客,以获取更多关于训练、微调和部署 Gemma 模型的示例。

查看文内链接,请点击阅读原文在 Hugging Face 博客上查看:

https://hf.co/blog/zh/gemma-peft

这篇关于使用 Hugging Face 微调 Gemma 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744845

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了