【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41

本文主要是介绍【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:46. 携带研究材料

题目描述

时间限制:5.000S  空间限制:128MB

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例
6 1
2 2 3 1 5 2
2 3 1 5 4 3
输出示例
5
提示信息

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。 

数据范围:
1 <= N <= 5000
1 <= M <= 5000
研究材料占用空间和价值都小于等于 1000

文章讲解:代码随想录

视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

题解1:回溯法

思路:使用回溯法暴力遍历所有物品是否放入的所有情况,找出最大价值。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));let res = 0;const path = [];const backtracking = function (start, totalSpace, totalValue) {if (totalValue > res) {res = totalValue;}for (let i = start; i < n; i++) {// 可以将下标为 i 的物品放入背包if (totalSpace + space[i] <= w) {path.push(i);backtracking(i + 1, totalSpace + space[i], totalValue + value[i]);path.pop();}}};backtracking(0, 0, 0);console.log(res);
});

分析:令 n 为物品数量,时间复杂度为 O(2 ^ n),空间复杂度为 O(logn)。这个解法时间复杂度过高,为指数级,不推荐使用。

题解2:动态规划

思路:最经典解01背包问题的方法是动态规划法。

注意:此题为 ACM 模式,需要自己在代码中读取输入,打印输出。

动态规划分析:

  • dp 数组以及下标的含义:dp[i][j] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大是多少。
  • 递推公式:dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])。
  • dp 数组初始化:dp[i][j] 的状态依赖于正上方和左上方的状态,因此需要初始化第0行和第0列,即 dp[0, j] 和 dp[i, 0]。dp[i, 0] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大自然是0。dp[0, j] 表示取或者不取下标为0的物品,放进容量为 j 的背包,j 小于 weight[0] 时,价值总和最大为0,大于等于 weight[0] 时为 value[0]。
  • 遍历顺序:dp[i][j] 的状态依赖于正上方和左上方的状态,因此在填充 dp[i][j] 时,它的正上方和上一行的左上方需要填充。先遍历物品再遍历背包和先遍历背包再遍历物品这两种方式都可以。
  • 打印 dp 数组:以如下输入为例

5 6
1 2 3 4 5
2 4 4 5 6

dp 数组为 [ [ 0, 2, 2, 2, 2, 2, 2 ], [ 0, 2, 4, 6, 6, 6, 6 ], [0, 2,  4, 6, 6, 8, 10 ], [ 0, 2,  4, 6, 6, 8, 10 ], [ 0, 2,  4, 6, 6, 8, 10 ] ]。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(n).fill().map(() => new Array(w + 1).fill(0));// 初始化 dp 数组for (let j = 0; j < w + 1; j++) {if (j >= space[0]) {dp[0][j] = value[0];}}// 先遍历物品,再遍历背包for (let i = 1; i < n; i++) {for (let j = 1; j < w + 1; j++) {if (j < space[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - space[i]] + value[i]);}}}console.log(dp[n - 1][w]);
});

分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(n * w)。

题解3:动态规划优化

思路:dp[i][j] 依赖于上一行正上方及左上方的状态,与同一行后面的状态无关。可以想到填充某一行时,将上一行内容覆盖到这一行,然后从后向前填充,这样 dp[j] 的状态只依赖于前面的状态。

动态规划分析:

  • dp 数组以及下标的含义:dp[j]表示容量为j的背包,所背的物品价值可以最大为dp[j]。
  • 递推公式:dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])。
  • dp 数组初始化:dp[0] 为0,j 大于0时 dp[j] 依赖于上一轮的 dp[j] 和前面的状态,为了取最大值后结果正确,应该初始化为0。即全部初始化为0。
  • 遍历顺序:先从前往后遍历物品,再从后往前遍历背包。
  • 打印 dp 数组:以如下输入为例

5 6
1 2 3 4 5
2 4 4 5 6

每一层的 dp 数组为

[0, 2, 2, 2, 2, 2, 2]
[0, 2, 4, 6, 6, 6, 6]
[0, 2,  4, 6, 6, 8, 10]
[0, 2,  4, 6, 6, 8, 10]
[0, 2,  4, 6, 6, 8, 10]

可以看到,将每一层的 dp 数组结合起来,和二维 dp 数组相同。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(w + 1).fill(0);// 先遍历物品,再遍历背包for (let i = 0; i < n; i++) {// 倒序遍历背包for (let j = w; j >= space[i]; j--) {dp[j] = Math.max(dp[j], dp[j - space[i]] + value[i]);}}console.log(dp[w]);
});

分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(w)。

收获

学习01背包问题的动态规划解法。

这篇关于【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744514

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动