本文主要是介绍【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:46. 携带研究材料
题目描述
时间限制:5.000S 空间限制:128MB
题目描述
小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。
小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。
输入描述
第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。
第二行包含 M 个正整数,代表每种研究材料的所占空间。
第三行包含 M 个正整数,代表每种研究材料的价值。
输出描述
输出一个整数,代表小明能够携带的研究材料的最大价值。
输入示例
6 1
2 2 3 1 5 2
2 3 1 5 4 3
输出示例
5
提示信息
小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。
数据范围:
1 <= N <= 5000
1 <= M <= 5000
研究材料占用空间和价值都小于等于 1000
文章讲解:代码随想录
视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili
题解1:回溯法
思路:使用回溯法暴力遍历所有物品是否放入的所有情况,找出最大价值。
const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));let res = 0;const path = [];const backtracking = function (start, totalSpace, totalValue) {if (totalValue > res) {res = totalValue;}for (let i = start; i < n; i++) {// 可以将下标为 i 的物品放入背包if (totalSpace + space[i] <= w) {path.push(i);backtracking(i + 1, totalSpace + space[i], totalValue + value[i]);path.pop();}}};backtracking(0, 0, 0);console.log(res);
});
分析:令 n 为物品数量,时间复杂度为 O(2 ^ n),空间复杂度为 O(logn)。这个解法时间复杂度过高,为指数级,不推荐使用。
题解2:动态规划
思路:最经典解01背包问题的方法是动态规划法。
注意:此题为 ACM 模式,需要自己在代码中读取输入,打印输出。
动态规划分析:
- dp 数组以及下标的含义:dp[i][j] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大是多少。
- 递推公式:dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])。
- dp 数组初始化:dp[i][j] 的状态依赖于正上方和左上方的状态,因此需要初始化第0行和第0列,即 dp[0, j] 和 dp[i, 0]。dp[i, 0] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大自然是0。dp[0, j] 表示取或者不取下标为0的物品,放进容量为 j 的背包,j 小于 weight[0] 时,价值总和最大为0,大于等于 weight[0] 时为 value[0]。
- 遍历顺序:dp[i][j] 的状态依赖于正上方和左上方的状态,因此在填充 dp[i][j] 时,它的正上方和上一行的左上方需要填充。先遍历物品再遍历背包和先遍历背包再遍历物品这两种方式都可以。
- 打印 dp 数组:以如下输入为例
5 6
1 2 3 4 5
2 4 4 5 6
dp 数组为 [ [ 0, 2, 2, 2, 2, 2, 2 ], [ 0, 2, 4, 6, 6, 6, 6 ], [0, 2, 4, 6, 6, 8, 10 ], [ 0, 2, 4, 6, 6, 8, 10 ], [ 0, 2, 4, 6, 6, 8, 10 ] ]。
const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(n).fill().map(() => new Array(w + 1).fill(0));// 初始化 dp 数组for (let j = 0; j < w + 1; j++) {if (j >= space[0]) {dp[0][j] = value[0];}}// 先遍历物品,再遍历背包for (let i = 1; i < n; i++) {for (let j = 1; j < w + 1; j++) {if (j < space[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - space[i]] + value[i]);}}}console.log(dp[n - 1][w]);
});
分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(n * w)。
题解3:动态规划优化
思路:dp[i][j] 依赖于上一行正上方及左上方的状态,与同一行后面的状态无关。可以想到填充某一行时,将上一行内容覆盖到这一行,然后从后向前填充,这样 dp[j] 的状态只依赖于前面的状态。
动态规划分析:
- dp 数组以及下标的含义:dp[j]表示容量为j的背包,所背的物品价值可以最大为dp[j]。
- 递推公式:dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])。
- dp 数组初始化:dp[0] 为0,j 大于0时 dp[j] 依赖于上一轮的 dp[j] 和前面的状态,为了取最大值后结果正确,应该初始化为0。即全部初始化为0。
- 遍历顺序:先从前往后遍历物品,再从后往前遍历背包。
- 打印 dp 数组:以如下输入为例
5 6
1 2 3 4 5
2 4 4 5 6
每一层的 dp 数组为
[0, 2, 2, 2, 2, 2, 2]
[0, 2, 4, 6, 6, 6, 6]
[0, 2, 4, 6, 6, 8, 10]
[0, 2, 4, 6, 6, 8, 10]
[0, 2, 4, 6, 6, 8, 10]
可以看到,将每一层的 dp 数组结合起来,和二维 dp 数组相同。
const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(w + 1).fill(0);// 先遍历物品,再遍历背包for (let i = 0; i < n; i++) {// 倒序遍历背包for (let j = w; j >= space[i]; j--) {dp[j] = Math.max(dp[j], dp[j - space[i]] + value[i]);}}console.log(dp[w]);
});
分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(w)。
收获
学习01背包问题的动态规划解法。
这篇关于【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!