【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41

本文主要是介绍【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:46. 携带研究材料

题目描述

时间限制:5.000S  空间限制:128MB

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例
6 1
2 2 3 1 5 2
2 3 1 5 4 3
输出示例
5
提示信息

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。 

数据范围:
1 <= N <= 5000
1 <= M <= 5000
研究材料占用空间和价值都小于等于 1000

文章讲解:代码随想录

视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

题解1:回溯法

思路:使用回溯法暴力遍历所有物品是否放入的所有情况,找出最大价值。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));let res = 0;const path = [];const backtracking = function (start, totalSpace, totalValue) {if (totalValue > res) {res = totalValue;}for (let i = start; i < n; i++) {// 可以将下标为 i 的物品放入背包if (totalSpace + space[i] <= w) {path.push(i);backtracking(i + 1, totalSpace + space[i], totalValue + value[i]);path.pop();}}};backtracking(0, 0, 0);console.log(res);
});

分析:令 n 为物品数量,时间复杂度为 O(2 ^ n),空间复杂度为 O(logn)。这个解法时间复杂度过高,为指数级,不推荐使用。

题解2:动态规划

思路:最经典解01背包问题的方法是动态规划法。

注意:此题为 ACM 模式,需要自己在代码中读取输入,打印输出。

动态规划分析:

  • dp 数组以及下标的含义:dp[i][j] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大是多少。
  • 递推公式:dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])。
  • dp 数组初始化:dp[i][j] 的状态依赖于正上方和左上方的状态,因此需要初始化第0行和第0列,即 dp[0, j] 和 dp[i, 0]。dp[i, 0] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大自然是0。dp[0, j] 表示取或者不取下标为0的物品,放进容量为 j 的背包,j 小于 weight[0] 时,价值总和最大为0,大于等于 weight[0] 时为 value[0]。
  • 遍历顺序:dp[i][j] 的状态依赖于正上方和左上方的状态,因此在填充 dp[i][j] 时,它的正上方和上一行的左上方需要填充。先遍历物品再遍历背包和先遍历背包再遍历物品这两种方式都可以。
  • 打印 dp 数组:以如下输入为例

5 6
1 2 3 4 5
2 4 4 5 6

dp 数组为 [ [ 0, 2, 2, 2, 2, 2, 2 ], [ 0, 2, 4, 6, 6, 6, 6 ], [0, 2,  4, 6, 6, 8, 10 ], [ 0, 2,  4, 6, 6, 8, 10 ], [ 0, 2,  4, 6, 6, 8, 10 ] ]。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(n).fill().map(() => new Array(w + 1).fill(0));// 初始化 dp 数组for (let j = 0; j < w + 1; j++) {if (j >= space[0]) {dp[0][j] = value[0];}}// 先遍历物品,再遍历背包for (let i = 1; i < n; i++) {for (let j = 1; j < w + 1; j++) {if (j < space[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - space[i]] + value[i]);}}}console.log(dp[n - 1][w]);
});

分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(n * w)。

题解3:动态规划优化

思路:dp[i][j] 依赖于上一行正上方及左上方的状态,与同一行后面的状态无关。可以想到填充某一行时,将上一行内容覆盖到这一行,然后从后向前填充,这样 dp[j] 的状态只依赖于前面的状态。

动态规划分析:

  • dp 数组以及下标的含义:dp[j]表示容量为j的背包,所背的物品价值可以最大为dp[j]。
  • 递推公式:dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])。
  • dp 数组初始化:dp[0] 为0,j 大于0时 dp[j] 依赖于上一轮的 dp[j] 和前面的状态,为了取最大值后结果正确,应该初始化为0。即全部初始化为0。
  • 遍历顺序:先从前往后遍历物品,再从后往前遍历背包。
  • 打印 dp 数组:以如下输入为例

5 6
1 2 3 4 5
2 4 4 5 6

每一层的 dp 数组为

[0, 2, 2, 2, 2, 2, 2]
[0, 2, 4, 6, 6, 6, 6]
[0, 2,  4, 6, 6, 8, 10]
[0, 2,  4, 6, 6, 8, 10]
[0, 2,  4, 6, 6, 8, 10]

可以看到,将每一层的 dp 数组结合起来,和二维 dp 数组相同。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(w + 1).fill(0);// 先遍历物品,再遍历背包for (let i = 0; i < n; i++) {// 倒序遍历背包for (let j = w; j >= space[i]; j--) {dp[j] = Math.max(dp[j], dp[j - space[i]] + value[i]);}}console.log(dp[w]);
});

分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(w)。

收获

学习01背包问题的动态规划解法。

这篇关于【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744514

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放