【YOLO系列算法人员摔倒检测】

2024-02-25 02:12

本文主要是介绍【YOLO系列算法人员摔倒检测】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLO系列算法人员摔倒检测

      • 模型和数据集下载
      • YOLO系列算法的人员摔倒检测
      • 数据集可视化
      • 数据集图像示例:

模型和数据集下载

yolo行人跌倒检测一:
1、训练好的行人跌倒检测权重以及PR曲线,loss曲线等等,map达90%多,在行人跌倒数据集中训练得到的权重,目标类别为fall共1个类别,并附1000多张行人摔倒数据集,标签格式为txt和xml两种,分别保存在两个文件夹中
2、采用pytrch框架,python代码,可以和YOLOv5共用一个环境,配置好环境就可以加载已经训练好的模型直接进行测试,得出结果

跌倒检测数据集一下载:
https://download.csdn.net/download/zhiqingAI/84587834
跌倒检测数据集二下载:
https://download.csdn.net/download/zhiqingAI/85052438
YOLOv3跌到检测数据集:
https://download.csdn.net/download/zhiqingAI/85474854
YOLOv5跌到检测数据集:
https://download.csdn.net/download/zhiqingAI/85490729
YOLOv5跌到检测数据集+pyqt界面:
https://download.csdn.net/download/zhiqingAI/85490824
YOLOv7行人跌倒检测+训练好的模型+1000多数据集
yolo格式标签行人跌倒数据集+ 8000张

YOLO系列算法的人员摔倒检测

YOLO系列算法从v1发展到v9,每个版本都有其独特的改进和创新。
以下是对YOLO系列部分版本的简要概述:

YOLOv1:作为YOLO系列的首个版本,它的核心思想是使用单个神经网络同时预测物体的类别和位置。这种方法在当时是一个重大突破,因为它将目标检测任务的速度大幅提升,但牺牲了一定的精度。
YOLOv2:在YOLOv1的基础上进行了改进,提出了YOLOv2(也称为YOLO9000)。这个版本通过引入批归一化、更高分辨率的输入图像、细粒度特征等方法,显著提高了召回率和定位精度。
YOLOv3:继续在速度和精度上进行优化,引入了多尺度预测、更复杂的网络结构等。
YOLOv4:进一步提升了性能,特别是在小物体检测上,通过引入马赛克数据增强、Mish激活函数等技术。
YOLOv5:在YOLOv4的基础上,更加注重模型的实用性和灵活性,采用了新的训练策略和网络设计,使其在保持高性能的同时,更加适合在资源受限的环境中部署。
YOLOv6 和 YOLOv7:分别在其前身的基础上进行了进一步的改进,提高了检测速度和精度,同时也更加注重模型的通用性和适应性。
YOLOv8:是YOLO系列中的新成员,它继续沿用和发展了YOLO系列的核心理念,通过不断的技术创新来提高模型的性能和应用范围。
yolov9: 最新出来的yolov9,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。研究者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。

总的来说,YOLO系列的发展体现了深度学习在目标检测领域的快速进步,每个版本都在尝试解决前一个版本的不足,并在速度和精度上寻求更好的平衡。随着技术的不断进步,YOLO系列将继续演化,为用户提供更加强大和便捷的目标检测工具

基于YOLO系列算法的人员摔倒检测系统通常涉及以下几个关键步骤

  1. 数据集准备:需要收集和标注用于训练的数据集。这些数据集应包含各种情况下的人体站立、弯腰蹲下和躺下摔倒的图片或视频。数据集的质量直接影响到模型的训练效果。
  2. 模型选择与训练:选择合适的YOLO模型版本,如YOLOv5、YOLOv7或YOLOv8,并根据具体的应用场景对模型进行训练。训练过程中,模型会学习识别人体的不同状态;
  3. 算法优化:为了提高检测的准确性,可能需要对算法进行优化,比如调整检测置信分和后处理IOU阈值。此外,还可以结合其他技术,如OpenPose,来进一步提高摔倒检测的准确率。
  4. 系统部署与测试:将训练好的模型部署到实际的应用场景中,如监控摄像头系统。系统应能够实时处理图像或视频流,并准确检测出摔倒事件。同时,系统还需要具备结果可视化和检测结果导出的功能。
  5. 界面设计:为了方便用户使用,可以设计一个友好的用户界面(UI),使用户能够轻松地上传图片或视频,触发检测,并查看检测结果。
  6. 性能评估:在实际应用中,需要对系统的性能进行评估,包括检测速度和精度。

总的来说,通过以上步骤,可以构建出一个能够有效检测人员摔倒事件的系统。这种系统在公共安全、老年人监护、体育赛事等领域具有广泛的应用前景,能够及时发出警报,减少事故发生的风险。

数据集可视化

在这里插入图片描述在这里插入图片描述在这里插入图片描述

数据集图像示例:

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

这篇关于【YOLO系列算法人员摔倒检测】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744121

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费