概率基础——指数分布

2024-02-24 22:04
文章标签 基础 概率 指数分布

本文主要是介绍概率基础——指数分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概率基础——指数分布

介绍

指数分布是一种连续概率分布,描述了独立随机事件之间的时间间隔。它常被用来模拟随机事件的等待时间,例如到达下一位顾客的等待时间、设备故障的间隔时间等。指数分布具有无记忆性的特点,即在给定时间内没有发生事件并不会影响下一次事件发生的概率。

理论及公式

指数分布的概率密度函数(PDF)为:

f ( x ; λ ) = λ e − λ x f(x;\lambda) = \lambda e^{-\lambda x} f(x;λ)=λeλx

其中, x ≥ 0 x \geq 0 x0 表示时间间隔, λ > 0 \lambda > 0 λ>0是指数分布的参数,也称为速率参数。参数 λ \lambda λ 表示单位时间(或单位长度)内发生事件的平均次数。

指数分布的参数

  • 速率参数 λ \lambda λ:单位时间(或单位长度)内发生事件的平均次数。速率参数 λ \lambda λ越大,事件发生的速率越快;速率参数 λ \lambda λ越小,事件发生的速率越慢。

举例

假设某个公交车站的乘客到达时间间隔符合指数分布,参数 λ = 0.1 \lambda = 0.1 λ=0.1,即平均每10分钟会有一个乘客到达。我们希望了解乘客到达的等待时间分布情况,以便优化公交车站的客流管理。

Python绘制不同参数的概率密度曲线

接下来,我们将使用Python来绘制不同参数的指数分布的概率密度曲线。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import expon# 定义不同参数的速率参数
lambdas = [0.5, 1, 2]# 生成x轴的取值范围
x = np.linspace(0, 5, 1000)# 绘制概率密度曲线
plt.figure(figsize=(10, 6))
for lam in lambdas:y = expon.pdf(x, scale=1/lam)plt.plot(x, y, label=f'lambda={lam}')plt.title('Exponential Distribution PDF with Different Lambda')
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

以上代码将绘制出三条不同参数 λ \lambda λ的指数分布概率密度曲线,参数 s c a l e = 1 / λ scale=1/\lambda scale=1/λ。从图中可以看出,不同参数的指数分布曲线具有不同的速率,速率参数 λ \lambda λ 越大,曲线下降越快,事件发生的速率越快。
对指数型随机变量进行采样生成,对 λ = 1 \lambda=1 λ=1的指数分布进行采样生成,代码如下:

from scipy.stats import expon
import matplotlib.pyplot as plt
import numpy as npexpon_rv = expon()
expon_rvs = expon_rv.rvs(size=100000)
x = np.linspace(0, 10, 1000)
plt.plot(x, expon_rv.pdf(x), 'r', lw=3, alpha=0.6, label="$\\lambda$=1")
plt.hist(expon_rvs, bins=100, density=True, alpha=0.75, edgecolor='black')
plt.grid(ls='--')
plt.legend()
plt.show()

在这里插入图片描述

总结

本文介绍了指数分布及Python实现,利用了函数包的各个方法计算出各个理论统计值,利用采样样本数据计算出来的值和理论值基本算都是相等的。

这篇关于概率基础——指数分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743502

相关文章

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)