本文主要是介绍洛谷 P1069 [NOIP2009 普及组] 细胞分裂【分解质因数+预处理优化】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
原题链接:https://www.luogu.com.cn/problem/P1069
题目描述
Hanks 博士是 BT(Bio-Tech,生物技术)领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
Hanks 博士手里现在有 N 种细胞,编号从 1∼N,一个第 i 种细胞经过 1 秒钟可以分裂为 Si 个同种细胞(Si 为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M 个试管,形成 M 份样本,用于实验。Hanks 博士的试管数 M 很大,普通的计算机的基本数据类型无法存储这样大的 M 值,但万幸的是,M 总可以表示为 m1 的 m2 次方,即 M=m1^m2,其中 m1,m2 均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 个细胞,Hanks 博士可以把它们分入 2 个试管,每试管内 2 个,然后开始实验。但如果培养皿中有 5 个细胞,博士就无法将它们均分入 2 个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始,Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入 M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
输入格式
第一行,有一个正整数 N,代表细胞种数。
第二行,有两个正整数 m1,m2,以一个空格隔开,即表示试管的总数 M=m1^m2。
第三行有 N 个正整数,第 i 个数 Si 表示第 i 种细胞经过 1 秒钟可以分裂成同种细胞的个数。
输出格式
一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。
如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数 −1。
输入输出样例
输入 #1
1 2 1 3
输出 #1
-1
输入 #2
2 24 1 30 12
输出 #2
2
说明/提示
【输入输出样例 #1 说明】
经过 1 秒钟,细胞分裂成 3 个,经过 2 秒钟,细胞分裂成 9个,……,可以看出无论怎么分裂,细胞的个数都是奇数,因此永远不能分入 2 个试管。
【输入输出样例 #2 说明】
第 1 种细胞最早在 3 秒后才能均分入 24 个试管,而第 2 种最早在 2 秒后就可以均分(每试管 144/24=6 个)。故实验最早可以在 2 秒后开始。
【数据范围】
对于 50% 的数据,有 m1^m2≤30000。
对于所有的数据,有 1≤N≤10000,1≤m1≤30000,1≤m2≤10000,1≤Si≤2×10^9。
NOIP 2009 普及组 第三题
解题思路:
首先肯定不能暴力,因为数据非常大,无法用常规整数类型存储,但是可以知道的是m1,m2都是可以用常规数据类型存储的,同时我们知道的是任意一个数都可以分解为若干质因子的乘积,所以我们可以对m1进行质因数分解,就可以得出m1拥有的各种质因子的个数,假设m1拥有质因子2的个数为3,由于这里是m1^m2,所以说总共有质因子2的个数为3*m2,对于每个分解出来的质因子个数都乘以m2,就可以得到m1^m2的各种质因子的个数。
然后考虑一些细胞x要平均分配到M=m1^m2个培养皿中实际上就是x要是M的倍数,x是M的倍数,那么M拥有的质因子,x都要有,并且x每种质因子个数都必须大于等于M每种质因子个数。
经过上述分析,我们只需要对每一种细胞都进行质因数分解即可,然后取每种情况的最小值作为答案,但是此时我们可以发现每一种细胞的值Si最大是2e9,这非常大,会导致每一次质因数分解的时间达到1e4.5左右,最多会有10000中细胞,那么时间会到达1e8左右,时间复杂度比较高了,有超时的风险,我们可以考虑优化,我们发现m1<=30000,所以对于每一种细胞里面的大于30000的质因子是没有用的,我们可以先预处理所有30000以内的质数,然后质因数分解时只需要枚举30000以内的质因子即可,30000以内的质数大概有三千多个,所以时间将降到了10000*3000左右,大概3e7左右,这个时间1s之内是可以过的。
时间复杂度:时间复杂度的瓶颈在于对于每一种细胞的值Si都进行质因数分解,由于之前已经预处理30000之内的所有质数,大概三千多个,所以时间复杂度大概为O(3000*n),n表示细胞种类数.
空间复杂度:O(30000),开了30000的数组来存储30000以内各种质因子出现的次数。
cpp代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>using namespace std;const int N = 10010, M = 30010;int n, m1, m2;
int a[N];
int Count[M], number[M]; // Count记录m1的m2次方各种质因子的个数,number用来记录各种细胞的各个质因子的个数
vector<int> primes; // 存储所有预处理出来的30000以内的所有质数bool check(int x)
{for (int i = 2; i <= x / i; i++)if (x % i == 0)return false;return true;
}
void init() // 预处理30000之内的所有子树
{for (int i = 2; i <= 30000; i++){if (check(i))primes.push_back(i);}
}void solve1(int x, int y, int count[]) // 对于x的y次方的各种质因子用count存起来
{for (int i = 0; i < primes.size(); i++){count[primes[i]] = 0; // 这里记得清空 //由于要处理每一种细胞,这个数组多次使用,每次要记得清空,int val = primes[i];if (x % val == 0){int cnt = 0;while (x % val == 0){x /= val;cnt++;}count[val] = cnt * y;}}
}int solve2() // 判断某种细胞的细胞至少要经过多少次分裂才能平均分到M=m1^m2个培养皿中
{int res = 0;for (int i = 0; i < primes.size(); i++){int x = primes[i];if (Count[x] == 0) // M=m1^m2没有的因子,细胞也不需要有continue;if (number[x] == 0) // 如果培养皿拥有质因子x,但是细胞没有这种质因子,那么这种细胞无论经过多少次分裂,都不可能是M的倍数{res = 2e9;break;}res = max(res, (Count[x] + number[x] - 1) / number[x]); // 细胞各种质因子的个数都必须大于等于M,所以需要向上取整}return res;
}
int main()
{cin >> n >> m1 >> m2;for (int i = 1; i <= n; i++)cin >> a[i];init(); // 预处理30000之内的所有质数solve1(m1, m2, Count); // 首先对M=m1^m2的进行质因数分解,存储在Count中int ans = 2e9;for (int i = 1; i <= n; i++){solve1(a[i], 1, number); // 对于第i中细胞,那么有a[i]的1次方,质因数分解存储在number中int res = solve2(); // 根据Count和number进行比较更新答案ans = min(ans, res);}if (ans == 2e9) // 表示所有细胞分裂若干次的细胞个数都无法成为M=m2^m2的倍数puts("-1");elseprintf("%d\n", ans);return 0;
}
这篇关于洛谷 P1069 [NOIP2009 普及组] 细胞分裂【分解质因数+预处理优化】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!