高斯拉普拉斯锐化(边缘检测)vc实现

2024-02-24 12:38

本文主要是介绍高斯拉普拉斯锐化(边缘检测)vc实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高斯拉普拉斯锐化(边缘检测)vc实现  -LoG锐化,边缘检测。



void CSDIELSView::OnSharpeningGaussianAndLaplace(){
//程序编制:李立宗  lilizong@gmail.com
//2012-8-12if(myImage1.IsNull())OnOpenResourceFile();if(!myImage2.IsNull())myImage2.Destroy();if(myImage2.IsNull()){myImage2.Create(myImage1.GetWidth(),myImage1.GetHeight(),24,0);}//COLORREF pixel; int maxY = myImage1.GetHeight();int maxX=myImage1.GetWidth();byte* pRealData;byte* pRealData2;pRealData=(byte*)myImage1.GetBits();pRealData2=(byte*)myImage2.GetBits();int pit=myImage1.GetPitch();int pit2=myImage2.GetPitch();//需要注意,pit和pit2的值并不一样,所以如果使用一个值,会导致不同的结果出现//CString str;//str.Format(TEXT("%d"),pit);//MessageBox(str);//str.Format(TEXT("%d"),pit2);//MessageBox(str);int bitCount=myImage1.GetBPP()/8;int bitCount2=myImage2.GetBPP()/8;int tempR,tempG,tempB;float temp,tempX,tempY;//int M[3][3]={{1,2,1},{2,4,2},{1,2,1}};int M[5][5]={{-2,-4,-4,-4,-2},{-4,0,8,0,-4},{-4,8,24,8,-4},{-4,0,8,0,-4},{-2,-4,-4,-4,-2}};int sum=0;for(int i=0;i<3;i++)for(int j=0;j<3;j++)sum=sum+M[i][j];//	tempR=tempG=tempG=0;//说明:将生产的图像作为24位图处理。for (int y=2; y<maxY-2; y++) {for (int x=2; x<maxX-2; x++) {tempR=*(pRealData+pit*(y-2)+(x-2)*bitCount)*M[0][0]+*(pRealData+pit*(y-2)+(x-1)*bitCount)*M[0][1]+*(pRealData+pit*(y-2)+(x)*bitCount)*M[0][2]+*(pRealData+pit*(y-2)+(x+1)*bitCount)*M[0][3]+*(pRealData+pit*(y-2)+(x+2)*bitCount)*M[0][4]+	*(pRealData+pit*(y-1)+(x-2)*bitCount)*M[1][0]+*(pRealData+pit*(y-1)+(x-1)*bitCount)*M[1][1]+*(pRealData+pit*(y-1)+(x)*bitCount)*M[1][2]+*(pRealData+pit*(y-1)+(x+1)*bitCount)*M[1][3]+*(pRealData+pit*(y-1)+(x+2)*bitCount)*M[1][4]+	*(pRealData+pit*(y)+(x-2)*bitCount)*M[2][0]+*(pRealData+pit*(y)+(x-1)*bitCount)*M[2][1]+*(pRealData+pit*(y)+(x)*bitCount)*M[2][2]+*(pRealData+pit*(y)+(x+1)*bitCount)*M[2][3]+*(pRealData+pit*(y)+(x+2)*bitCount)*M[2][4]+*(pRealData+pit*(y+1)+(x-2)*bitCount)*M[3][0]+*(pRealData+pit*(y+1)+(x-1)*bitCount)*M[3][1]+*(pRealData+pit*(y+1)+(x)*bitCount)*M[3][2]+*(pRealData+pit*(y+1)+(x+1)*bitCount)*M[3][3]+*(pRealData+pit*(y+1)+(x+2)*bitCount)*M[3][4]	+*(pRealData+pit*(y+2)+(x-2)*bitCount)*M[4][0]+*(pRealData+pit*(y+2)+(x-1)*bitCount)*M[4][1]+*(pRealData+pit*(y+2)+(x)*bitCount)*M[4][2]+*(pRealData+pit*(y+2)+(x+1)*bitCount)*M[4][3]+*(pRealData+pit*(y+2)+(x+2)*bitCount)*M[4][4];tempR=abs(tempR);if(tempR>255)tempR=255;if(bitCount==1){tempG=tempR;tempB=tempR;}else{tempG=*(pRealData+pit*(y-2)+(x-2)*bitCount+1)*M[0][0]+*(pRealData+pit*(y-2)+(x-1)*bitCount+1)*M[0][1]+*(pRealData+pit*(y-2)+(x)*bitCount+1)*M[0][2]+*(pRealData+pit*(y-2)+(x+1)*bitCount+1)*M[0][3]+*(pRealData+pit*(y-2)+(x+2)*bitCount+1)*M[0][4]+	*(pRealData+pit*(y-1)+(x-2)*bitCount+1)*M[1][0]+*(pRealData+pit*(y-1)+(x-1)*bitCount+1)*M[1][1]+*(pRealData+pit*(y-1)+(x)*bitCount+1)*M[1][2]+*(pRealData+pit*(y-1)+(x+1)*bitCount+1)*M[1][3]+*(pRealData+pit*(y-1)+(x+2)*bitCount+1)*M[1][4]+	*(pRealData+pit*(y)+(x-2)*bitCount+1)*M[2][0]+*(pRealData+pit*(y)+(x-1)*bitCount+1)*M[2][1]+*(pRealData+pit*(y)+(x)*bitCount+1)*M[2][2]+*(pRealData+pit*(y)+(x+1)*bitCount+1)*M[2][3]+*(pRealData+pit*(y)+(x+2)*bitCount+1)*M[2][4]+*(pRealData+pit*(y+1)+(x-2)*bitCount+1)*M[3][0]+*(pRealData+pit*(y+1)+(x-1)*bitCount+1)*M[3][1]+*(pRealData+pit*(y+1)+(x)*bitCount+1)*M[3][2]+*(pRealData+pit*(y+1)+(x+1)*bitCount+1)*M[3][3]+*(pRealData+pit*(y+1)+(x+2)*bitCount+1)*M[3][4]	+*(pRealData+pit*(y+2)+(x-2)*bitCount+1)*M[4][0]+*(pRealData+pit*(y+2)+(x-1)*bitCount+1)*M[4][1]+*(pRealData+pit*(y+2)+(x)*bitCount+1)*M[4][2]+*(pRealData+pit*(y+2)+(x+1)*bitCount+1)*M[4][3]+*(pRealData+pit*(y+2)+(x+2)*bitCount+1)*M[4][4];tempG=abs(tempG);if(tempG>255)tempG=255;///tempB=*(pRealData+pit*(y-2)+(x-2)*bitCount+2)*M[0][0]+*(pRealData+pit*(y-2)+(x-1)*bitCount+2)*M[0][1]+*(pRealData+pit*(y-2)+(x)*bitCount+2)*M[0][2]+*(pRealData+pit*(y-2)+(x+1)*bitCount+2)*M[0][3]+*(pRealData+pit*(y-2)+(x+2)*bitCount+2)*M[0][4]+	*(pRealData+pit*(y-1)+(x-2)*bitCount+2)*M[1][0]+*(pRealData+pit*(y-1)+(x-1)*bitCount+2)*M[1][1]+*(pRealData+pit*(y-1)+(x)*bitCount+2)*M[1][2]+*(pRealData+pit*(y-1)+(x+1)*bitCount+2)*M[1][3]+*(pRealData+pit*(y-1)+(x+2)*bitCount+2)*M[1][4]+	*(pRealData+pit*(y)+(x-2)*bitCount+2)*M[2][0]+*(pRealData+pit*(y)+(x-1)*bitCount+2)*M[2][1]+*(pRealData+pit*(y)+(x)*bitCount+2)*M[2][2]+*(pRealData+pit*(y)+(x+1)*bitCount+2)*M[2][3]+*(pRealData+pit*(y)+(x+2)*bitCount+2)*M[2][4]+*(pRealData+pit*(y+1)+(x-2)*bitCount+2)*M[3][0]+*(pRealData+pit*(y+1)+(x-1)*bitCount+2)*M[3][1]+*(pRealData+pit*(y+1)+(x)*bitCount+2)*M[3][2]+*(pRealData+pit*(y+1)+(x+1)*bitCount+2)*M[3][3]+*(pRealData+pit*(y+1)+(x+2)*bitCount+2)*M[3][4]	+*(pRealData+pit*(y+2)+(x-2)*bitCount+2)*M[4][0]+*(pRealData+pit*(y+2)+(x-1)*bitCount+2)*M[4][1]+*(pRealData+pit*(y+2)+(x)*bitCount+2)*M[4][2]+*(pRealData+pit*(y+2)+(x+1)*bitCount+2)*M[4][3]+*(pRealData+pit*(y+2)+(x+2)*bitCount+2)*M[4][4];tempB=abs(tempB);if(tempB>255)tempB=255;}*(pRealData2+pit2*y+x*bitCount2)=tempR;*(pRealData2+pit2*y+x*bitCount2+1)=tempG;*(pRealData2+pit2*y+x*bitCount2+2)=tempB;}}Invalidate();}


这篇关于高斯拉普拉斯锐化(边缘检测)vc实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742127

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P