【算法与数据结构】684、685、LeetCode冗余连接I II

2024-02-24 06:44

本文主要是介绍【算法与数据结构】684、685、LeetCode冗余连接I II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、684、冗余连接 I
  • 二、685、冗余连接 II
  • 三、完整代码

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、684、冗余连接 I

在这里插入图片描述
在这里插入图片描述

  思路分析:题目给出一个无向有环图,要求去掉一个边以后构成一个树(多叉树)。那么我们根据并查集理论,将所有的边加入到并查集中,前面的边先连上,边上的两个节点如果不在同一个集合中,就加入集合。如果两个节点已经出现在同一集合里,说明这两个节点已经连接在一起了,再加入一条后来的边就会构成环。因此去掉后来的这条边即可。

  程序如下

class Solution {
private:int n = 200005;		// 节点数量 200000vector<int> father = vector<int>(n, 0);	// C++里面的一种数据结构// 并查集初始化void init() {for (int i = 0; i < n; ++i) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}
public:vector<int> findRedundantConnection(vector<vector<int>>& edges) {init();for (int i = 0; i < edges.size(); i++) {if (isSame(edges[i][0], edges[i][1])) return edges[i];else join(edges[i][0], edges[i][1]);}return { };}
};

复杂度分析:

  • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),其中 n n n是图中边的个数,即edges数组的大小。需要遍历图中的 n n n条边,对于每条边,需要对两个节点查找祖先,如果两个节点的祖先不同则需要进行合并,需要进行2次查找和最多1次合并。一共需要进行 2 n 2n 2n次查找和最多 n n n次合并,因此总时间复杂度是 O ( 2 n log ⁡ ⁡ n ) = O ( n log ⁡ n ) O(2n \log ⁡n)=O(n \log n) O(2nlogn)=O(nlogn)
  • 空间复杂度: O ( n ) O(n) O(n),主要开销用于father数组。

二、685、冗余连接 II

在这里插入图片描述
在这里插入图片描述

  思路分析:题目说明,图原本是一棵树,只不过在不增加节点的情况下多了一条额外的边,我们需要把多出来的这一条边去除。与684题区别在于本题是有向图,684题是无向图。关于有向图有出度和入度的说法。出度是指节点发出的箭头数量,入度是指指向节点的箭头数量。根节点没有父节点,其他节点有且只有一个父节点,那么多出来的一条边就会改变了节点的入度数量,而出度的数量无法成为判断标准(一个父节点可以由多个子节点,出度数量不唯一)。出现入度为2的节点有以下两种情况:

在这里插入图片描述

  如果加入的这条边形成了有向环,那么入度不会改变:
在这里插入图片描述
  统计节点入度:

int inDegree[N] = {0}; // 记录节点入度
n = edges.size(); // 边的数量
for (int i = 0; i < n; i++) {inDegree[edges[i][1]]++; // 统计入度
}

  前两种入度为2的情况一定是删除入度为2的节点的两条边其中一条。题目还要求返回最后出现在二维数组的答案,也就是说要从后往前遍历,删除以后判断剩下的图是否构成树。如果说两条边都可以构成树,就删除最后一条边。

vector<int> vec; // 记录入度为2的边(如果有的话就两条边)
// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案
for (int i = n - 1; i >= 0; i--) {if (inDegree[edges[i][1]] == 2) {vec.push_back(i);}
}
// 处理图中情况1 和 情况2
// 如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树
if (vec.size() > 0) {if (isTreeAfterRemoveEdge(edges, vec[0])) {return edges[vec[0]];} else {return edges[vec[1]];}
}

  情况三,明确没有入度为2的情况,一定是有环,我们从后往前遍历,找到删除以后的那个可以构成树的边。那么如何判断一个图是否为树,应该应用到并查集了。因为如果两个点所在的边在添加图之前如果就可以在并查集里找到了相同的根,那么这条边添加上之后 这个图一定不是树了。

// 情况三:在有向图里找到删除的那条边,使其变成树vector<int> getRemoveEdge(const vector<vector<int>>& edges) {init(); // 初始化并查集for (int i = 0; i < n; i++) { // 遍历所有的边if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边return edges[i];}join(edges[i][0], edges[i][1]);}return {};}

  程序如下

// 685、冗余连接II-并查集
class Solution2 {
private:static const int N = 1005;		// 节点数量 1005int father[N];int n;                          // 边的数量// 并查集初始化void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}// 情况三:在有向图里找到删除的那条边,使其变成树vector<int> getRemoveEdge(const vector<vector<int>>& edges) {init(); // 初始化并查集for (int i = 0; i < n; i++) { // 遍历所有的边if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边return edges[i];}join(edges[i][0], edges[i][1]);}return {};}// 删一条边之后判断是不是树bool isTreeAfterRemoveEdge(const vector<vector<int>>& edges, int deleteEdge) {init(); // 初始化并查集for (int i = 0; i < n; i++) {if (i == deleteEdge) continue;if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,一定不是树return false;}join(edges[i][0], edges[i][1]);}return true;}
public:vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {int inDegree[N] = { 0 }; // 记录节点入度n = edges.size(); // 边的数量for (int i = 0; i < n; i++) {inDegree[edges[i][1]]++; // 统计入度}vector<int> vec; // 记录入度为2的边(如果有的话就两条边)// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案for (int i = n - 1; i >= 0; i--) {if (inDegree[edges[i][1]] == 2) {vec.push_back(i);}}// 情况一和情况二:如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树if (vec.size() > 0) {if (isTreeAfterRemoveEdge(edges, vec[0])) {return edges[vec[0]];}else {return edges[vec[1]];}}// 情况三:明确没有入度为2的情况,那么一定有有向环,找到构成环的边返回就可以了return getRemoveEdge(edges);}
};

复杂度分析:

  • 时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn)
  • 空间复杂度: O ( n ) O(n) O(n)

三、完整代码

# include <iostream>
# include <vector>
using namespace std;// 684、冗余连接I-并查集
class Solution {
private:int n = 200005;		// 节点数量 200000vector<int> father = vector<int>(n, 0);	// C++里面的一种数据结构// 并查集初始化void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}
public:vector<int> findRedundantConnection(vector<vector<int>>& edges) {init();for (int i = 0; i < edges.size(); i++) {if (isSame(edges[i][0], edges[i][1])) return edges[i];else join(edges[i][0], edges[i][1]);}return { };}
};// 685、冗余连接II-并查集
class Solution2 {
private:static const int N = 1005;		// 节点数量 1005int father[N];int n;                          // 边的数量// 并查集初始化void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}// 情况三:在有向图里找到删除的那条边,使其变成树vector<int> getRemoveEdge(const vector<vector<int>>& edges) {init(); // 初始化并查集for (int i = 0; i < n; i++) { // 遍历所有的边if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边return edges[i];}join(edges[i][0], edges[i][1]);}return {};}// 删一条边之后判断是不是树bool isTreeAfterRemoveEdge(const vector<vector<int>>& edges, int deleteEdge) {init(); // 初始化并查集for (int i = 0; i < n; i++) {if (i == deleteEdge) continue;if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,一定不是树return false;}join(edges[i][0], edges[i][1]);}return true;}
public:vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {int inDegree[N] = { 0 }; // 记录节点入度n = edges.size(); // 边的数量for (int i = 0; i < n; i++) {inDegree[edges[i][1]]++; // 统计入度}vector<int> vec; // 记录入度为2的边(如果有的话就两条边)// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案for (int i = n - 1; i >= 0; i--) {if (inDegree[edges[i][1]] == 2) {vec.push_back(i);}}// 情况一和情况二:如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树if (vec.size() > 0) {if (isTreeAfterRemoveEdge(edges, vec[0])) {return edges[vec[0]];}else {return edges[vec[1]];}}// 情况三:明确没有入度为2的情况,那么一定有有向环,找到构成环的边返回就可以了return getRemoveEdge(edges);}
};int main() {//   // 684、冗余连接I-并查集-测试案例//vector<vector<int>> edges = { {1, 2}, {1, 3}, {2, 3} };//Solution s1;//vector<int> result = s1.findRedundantConnection(edges);// 685、冗余连接II-并查集-测试案例vector<vector<int>> edges = { {1, 2}, {1, 3}, {2, 3} };Solution2 s2;vector<int> result = s2.findRedundantDirectedConnection(edges);for (vector<int>::iterator it = result.begin(); it < result.end(); it++) {cout << *it << ' ';}cout << endl;system("pause");return 0;
}

end

这篇关于【算法与数据结构】684、685、LeetCode冗余连接I II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/741271

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Spring Boot 整合 MyBatis 连接数据库及常见问题

《SpringBoot整合MyBatis连接数据库及常见问题》MyBatis是一个优秀的持久层框架,支持定制化SQL、存储过程以及高级映射,下面详细介绍如何在SpringBoot项目中整合My... 目录一、基本配置1. 添加依赖2. 配置数据库连接二、项目结构三、核心组件实现(示例)1. 实体类2. Ma

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

Windows Server服务器上配置FileZilla后,FTP连接不上?

《WindowsServer服务器上配置FileZilla后,FTP连接不上?》WindowsServer服务器上配置FileZilla后,FTP连接错误和操作超时的问题,应该如何解决?首先,通过... 目录在Windohttp://www.chinasem.cnws防火墙开启的情况下,遇到的错误如下:无法与

IDEA连接达梦数据库的详细配置指南

《IDEA连接达梦数据库的详细配置指南》达梦数据库(DMDatabase)作为国产关系型数据库的代表,广泛应用于企业级系统开发,本文将详细介绍如何在IntelliJIDEA中配置并连接达梦数据库,助力... 目录准备工作1. 下载达梦JDBC驱动配置步骤1. 将驱动添加到IDEA2. 创建数据库连接连接参数

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为