7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码

本文主要是介绍7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

如果你之前没有做过数据压缩,或者想要了解数据压缩的原理,那么这编文章将会帮到你。这编文章将会带你彻底了解哈夫曼编码原理,这种编码方式常用作的图片无损压缩,和ZIP的等压缩存储。

思考,计算机的存储与解析获取

这里有一组数据为1, 3,4,5,6,1,4,3,5. 单位为字节,把他们存起来。那么二进制就是1,11,100,101,110,1,100,11, 101. 但是计算机存储的时候,他们每个数据占8个“格子” ,即为**00000001, 00000011,00000100,00000101,00000110,
00000001,00000100, 00000011,00000101.**真正存储的时候是没有分割区分的,数据都是放在一起的。000000010000001100000100000001010000011000000001000001000000001100000101 。那么是怎么识别获取的数据的呢? 读取的时候,每8个位置作为一个数据读取,如果是int类型,一般都是32位,即每32位作为一个数据。
即为

可见,前缀为00000这部分是无效数据,无疑会浪费了很大一部分空间。这种存储编码被成为定长编码。这是为什么会这样子存储?因为如果不固定长度,计算机就不会知道读的数据是什么。举个例子,1和3放在在一起为111,如果不固定位数,可能识别为3和1(11,1)也可以识别为1和3(1,11),甚至全部读取为一个数字为7(111)

那么有没有一种存储方式可以按需节约来存储呢?答案是

树的知识

我们先回顾下关于树的知识点,方便我们理解下面的内容。

叶子结点

叶子结点是指一个树形结构中,没有任何子结点的节点,也就是说它是树结构的最底层节点

在这里插入图片描述

什么是度?

当前结点的最大的子节点数目。也就是分支的数目。
在这里插入图片描述
如图,A的度为2, B的度为2. 而叶子结点的度为0. 由此可见,二叉树结点的最大的度为2.最小为0.

什么是路径,路径长度

路径: 是指从树中一个节点到另一个节点的分支所构成的路线。
路径长度: 从一个结点到另一个结点所经过的“边”的数量,被我们称为两个结点之间的路径长度。
在这里插入图片描述

例如:A到F的路径长度为2。A到H的路径长度为3

什么是权值

权值就是某个结点存储的数据的值。如下图,H结点存了一个数据是100,那么久叫他的权值为100
在这里插入图片描述

什么是带权路径长度

权路径长度是指根结点到某的结点的路径的长度和该结点的权值相乘的结果。
如上图, 根结点A到H的路径为3, 而H结点的权值为100,那么他的带权路径长度为3*100=300

哈夫曼编码

我们不急着怎么看他的定义,先通过例子去理解。

现在有个一串字母"ACCCCCABDDD",按照下面方式将它进行特殊存储
下面是字符对应二进制表格

字符二进制
A01000001
B01000010
C01000011
D01000100

第一步,将数据进行节约存储。

为了节约数据空间,我们把前面可以理解为多余的部分空间去掉,做个映射表,即为

字符二进制
A1
B10
C11
D100

第二步,统计每一个字符的出现个数

字符出现个数
A1
B2
C5
D3

第三步,按“出现个数”进行排序

字符出现个数
C5
D3
B2
A1

第四步,构建带权值的二叉树

将“出现个数”作为父结点权值(具体规则看下面步骤), 将字符二进制数据作为叶子结点权值,构建二叉树。将权值越大的,距离根节点越近,最大权值带权路径最短,以此例推。(如果忘记的概念,请到上面重复阅读)

(1)首先把最小的两个权值的作为叶子节点 ,出现次数大的在左边, 构建一个二叉树。如下图
在这里插入图片描述

(2)将这个新组成的二叉树他的父节点求权值,将A和B的权值相加,得到 3,如下
在这里插入图片描述

(3)将比A和B最近的数据进行构建新组合二叉树,刚刚好比A和B大的数据是D,将D与A,B的父节点,作为同一层构建二叉树,如下。

在这里插入图片描述

然后继续求顶部根节点的权值,将D的权值与A,B的父节点的权值相加求值。
在这里插入图片描述
依次类推,可以得出整棵树如下

在这里插入图片描述
然后,把除了叶子节点的权值全部改成1.

在这里插入图片描述

最后,叶子节点全部改成0,除B 外,B 改成1

在这里插入图片描述

第五步,制作代号表

把左边节点权值, 我们从顶点触发,把经过的叶子节点带权路径轨迹记录下来。

第一个为: 1 - 0
第二个为: 1 - 1 - 0
第三个为: 1 - 1 - 1 - 0
第四个为: 1 - 1 -1 - 1

由此可以推出

代号字母
10C
110D
1110A
1111B

没错,这时候你已经猜出来,为什么要这么做了。

第六步,存储

有了上面这个表格后,就可以存储和读取了。
字符串为:ACCCCCABDDD
那么按照上面的表格,分布存储为如下
1110 10 10 10 10 10 1110 1111 110 110 110

第七步,读取

我们需要根据这个树,通过轨迹来读取对于的值。
在这里插入图片描述
根节点出发,遇到1右边,遇到0左边
读取这串数据“1110 10 10 10 10 10 1110 1111 110 110 110”,如图
在这里插入图片描述
所以读取第一个值是A,(存储表的的时候是存二进制(1),这里只不过是为了好阅读)
剩下的数据为“ 10 10 10 10 10 1110 1111 110 110 110”,继续解析数据,如图

口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“10 10 10 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边

在这里插入图片描述
剩下的数据为“ 10 10 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 10 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 1110 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 1111 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述
剩下的数据为“ 110 110 110”,继续解析数据,如图,
口诀: 遇到1右边,遇到0左边
在这里插入图片描述

以此类推下去,全部都能解析出来。

这样的二叉树树,称为哈夫曼树。

下面是哈夫曼树的概念引用

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

由此,对比传统的存储二进制,可见节约了多少空间!通过这个规则,你已经知道为什么出现次数最多的要到前面,这样可以大大地提高读取效率。

有兴趣的朋友可以思考下图片的数据是怎么压缩的?欢迎到评论区 下留言哈哈。提示:一张图片可能有颜色值大量重复,比如一区域只有蓝色,其他全是红色的图片。

如果这篇文章有帮助到你,请点赞,评论,关注,收藏。

这篇关于7分钟0基础彻底理解常用数据压缩原理---哈夫曼编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740834

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、