【原创】一键实现CPO-BiTCN-BiGRU预测!24年顶级SCI算法优化!先用先发!直接替换Excel出图!

本文主要是介绍【原创】一键实现CPO-BiTCN-BiGRU预测!24年顶级SCI算法优化!先用先发!直接替换Excel出图!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

数据介绍

模型介绍

1.BiTCN层

2.BiGRU层

3.基于CPO算法优化的BiTCN-BiGRU模型

创新点

构建BiTCN-BiGRU创新点在于:

使用CPO冠豪猪优化算法创新点在于:

结果展示

完整代码


         今天为大家带来一期CPO-BiTCN-BiGRU回归预测代码,采用2024年顶级SCI期刊《Knowledge-Based Systems》上刚出来的CPO优化算法进行优化!这个模型是作者独家原创的!完全可以当作创新点!任何学术平台都搜索不到,创新性极高!直接替换Excel数据即可用!

          特别需要指出的是,别说加了CPO优化算法,就算不加优化算法,我们学术平台上搜索BiTCN-BiGRU,也是完全搜索不到这个模型的!!!

知网平台:

WOS平台:

数据介绍

作者采用的案例数据是某地光伏功率数据,特征包括气温, 方位角, 云层不透明度, 露点温度, DHI(太阳散射辐射指数), DNI(太阳直接辐射指数), GHI(太阳总水平辐射), GTI(固定倾角辐射), GTI(跟踪倾角辐射), 大气可降水量, 相对湿度, 降雪深度, 地面气压, 高度10m风向, 高度10m风速, 天顶角,输出即为实际功率一列。

图片

在实际处理时,由于光伏白天不发电,因此作者把功率为0的行都删除了!同时,由于时间关系,作者这边只选取了2022年1月份31天的功率数据进行预测,如图所示。更换自己的数据时,只需最后一列放想要预测的列,其余列放特征即可,无需更改代码,非常方便!

模型介绍

1.BiTCN层

TCN由具有相同输入和输出长度的扩张因果卷积层组成,结合了CNN和RNN的优势。然而,传统的TCN只对输入序列进行正向卷积计算,只提取正向数据特征,忽略了反向中的隐含信息。因此,采用双向时间卷积结构BiTCN来捕捉前后方向的隐藏特征,以更好地获得功率序列的长时间依赖性!BiTCN的网络结构如下图所示!非常新颖!

2.BiGRU层

接着,利用BiGRU层来进一步处理BiTCN的输出,通过考虑时间序列的前后文信息来提高预测的准确性,进一步提高预测精度!整个模型的结构如下图所示:

3.于CPO算法优化的BiTCN-BiGRU模型

但是,BiTCN-BiGRU模型的参数太多了,为了避免人工调参的局限性与盲目性,本文提出了基于冠豪猪算法CPO优化的BiTCN-BiGRU模型。通过优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数四个参数提高其预测精度,减少人工调参。

冠豪猪优化器(Crested Porcupine Optimizer, CPO)是一种新型的元启发式算法(智能优化算法),该成果由Abdel-Basset等人于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上,模拟了冠豪猪的各种防御行为,原文作者采用CEC2014、CEC2017和CEC2020三个CEC基准函数对CPO进行了验证,效果非常不错!

具体原理和测试效果请看这篇推文:

2024年新算法-冠豪猪优化算法(CPO)-公式原理详解与性能测评 附赠Matlab代码

适用平台:Matlab2022及以上,没有的可免费提供安装包!

创新点

构建BiTCN-BiGRU创新点在于:

1. 混合模型架构的设计创新

BiTCN-BiGRU模型的核心创新之一在于它将BiTCN和BiGRU两种网络架构融合在一起。TCN通过使用膨胀卷积和残差连接优化了传统卷积神经网络(CNN)在时间序列分析中的应用,提高了模型对长期数据依赖的捕捉能力。而BiGRU则在捕获时间序列的前后依赖关系方面表现出色,能够同时考虑过去和未来的信息。这种混合架构利用了两种方法的优点,既能处理复杂的时间依赖关系,又能提高模型对时间序列动态特征的适应能力。

2. 膨胀卷积和因果卷积的应用

在TCN部分,膨胀卷积的使用大大增加了模型的感受野,使其能够捕捉到更长期的依赖性,而不会显著增加参数数量或计算复杂度。此外,通过应用因果卷积,确保了模型在预测当前时间点的值时,只会使用到当前时间点之前的信息,有效防止了未来信息的泄露。这些技术的应用使得BiTCN-BiGRU模型在处理长序列时间数据时,能够更准确地预测未来的趋势和模式。

3. 双向学习机制的优化

BiGRU部分的双向学习机制是模型另一大创新点。通过在时间序列的正向和反向上分别应用GRU单元,模型能够综合利用过去和未来的信息进行预测。这种机制特别适合于处理那些在时间上具有双向依赖性的序列数据。结合TCN部分的长期依赖捕捉能力,BiTCN-BiGRU模型能够更全面地理解和预测时间序列数据的复杂动态。

4. 网络参数和结构的自动优化

在BiTCN-BiGRU模型的训练过程中,采用了优化算法(如CPO)自动调整网络参数,包括学习率、神经元数量、滤波器数量等。这种自动优化机制不仅减少了手动调参的工作量,还能根据数据特性调整模型结构,从而在不同的时间序列预测任务中达到最佳性能。

使用CPO冠豪猪优化算法创新点在于:

冠豪猪优化器刚刚于2024年1月发表在中科院1区顶级SCI期刊Knowledge-Based Systems上!实验结果表明,NRBO算法在大部分函数上均取得了最优结果!​你先用,你就是创新!

图片

之前推文有做过​CPO和23年新算法RIME的比较,效果显而易见!

结果展示

迭代曲线:

由于时间关系,这里只跑了6次,实际使用时可跑更多次取得更好的效果!

训练集预测结果:

测试集预测结果:

可以看到,预测值非常贴近实际曲线,甚至可以说是完美一致!

线性拟合图:

误差直方图:

模型结构图:

预测结果指标:

完整代码

点击下方小卡片,后台回复关键字,不区分大小写:

CXYHB

其他更多需求或想要的代码均可点击下方小卡片后后台私信,看到后会秒回~

这篇关于【原创】一键实现CPO-BiTCN-BiGRU预测!24年顶级SCI算法优化!先用先发!直接替换Excel出图!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740815

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig