本文主要是介绍【原创】一键实现CPO-BiTCN-BiGRU预测!24年顶级SCI算法优化!先用先发!直接替换Excel出图!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~
目录
数据介绍
模型介绍
1.BiTCN层
2.BiGRU层
3.基于CPO算法优化的BiTCN-BiGRU模型
创新点
构建BiTCN-BiGRU创新点在于:
使用CPO冠豪猪优化算法创新点在于:
结果展示
完整代码
今天为大家带来一期CPO-BiTCN-BiGRU回归预测代码,采用2024年顶级SCI期刊《Knowledge-Based Systems》上刚出来的CPO优化算法进行优化!这个模型是作者独家原创的!完全可以当作创新点!任何学术平台都搜索不到,创新性极高!直接替换Excel数据即可用!
特别需要指出的是,别说加了CPO优化算法,就算不加优化算法,我们学术平台上搜索BiTCN-BiGRU,也是完全搜索不到这个模型的!!!
知网平台:
WOS平台:
数据介绍
作者采用的案例数据是某地光伏功率数据,特征包括气温, 方位角, 云层不透明度, 露点温度, DHI(太阳散射辐射指数), DNI(太阳直接辐射指数), GHI(太阳总水平辐射), GTI(固定倾角辐射), GTI(跟踪倾角辐射), 大气可降水量, 相对湿度, 降雪深度, 地面气压, 高度10m风向, 高度10m风速, 天顶角,输出即为实际功率一列。
在实际处理时,由于光伏白天不发电,因此作者把功率为0的行都删除了!同时,由于时间关系,作者这边只选取了2022年1月份31天的功率数据进行预测,如图所示。更换自己的数据时,只需最后一列放想要预测的列,其余列放特征即可,无需更改代码,非常方便!
模型介绍
1.BiTCN层
TCN由具有相同输入和输出长度的扩张因果卷积层组成,结合了CNN和RNN的优势。然而,传统的TCN只对输入序列进行正向卷积计算,只提取正向数据特征,忽略了反向中的隐含信息。因此,采用双向时间卷积结构BiTCN来捕捉前后方向的隐藏特征,以更好地获得功率序列的长时间依赖性!BiTCN的网络结构如下图所示!非常新颖!
2.BiGRU层
接着,利用BiGRU层来进一步处理BiTCN的输出,通过考虑时间序列的前后文信息来提高预测的准确性,进一步提高预测精度!整个模型的结构如下图所示:
3.基于CPO算法优化的BiTCN-BiGRU模型
但是,BiTCN-BiGRU模型的参数太多了,为了避免人工调参的局限性与盲目性,本文提出了基于冠豪猪算法CPO优化的BiTCN-BiGRU模型。通过优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数四个参数提高其预测精度,减少人工调参。
冠豪猪优化器(Crested Porcupine Optimizer, CPO)是一种新型的元启发式算法(智能优化算法),该成果由Abdel-Basset等人于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上,模拟了冠豪猪的各种防御行为,原文作者采用CEC2014、CEC2017和CEC2020三个CEC基准函数对CPO进行了验证,效果非常不错!
具体原理和测试效果请看这篇推文:
2024年新算法-冠豪猪优化算法(CPO)-公式原理详解与性能测评 附赠Matlab代码
适用平台:Matlab2022及以上,没有的可免费提供安装包!
创新点
构建BiTCN-BiGRU创新点在于:
1. 混合模型架构的设计创新
BiTCN-BiGRU模型的核心创新之一在于它将BiTCN和BiGRU两种网络架构融合在一起。TCN通过使用膨胀卷积和残差连接优化了传统卷积神经网络(CNN)在时间序列分析中的应用,提高了模型对长期数据依赖的捕捉能力。而BiGRU则在捕获时间序列的前后依赖关系方面表现出色,能够同时考虑过去和未来的信息。这种混合架构利用了两种方法的优点,既能处理复杂的时间依赖关系,又能提高模型对时间序列动态特征的适应能力。
2. 膨胀卷积和因果卷积的应用
在TCN部分,膨胀卷积的使用大大增加了模型的感受野,使其能够捕捉到更长期的依赖性,而不会显著增加参数数量或计算复杂度。此外,通过应用因果卷积,确保了模型在预测当前时间点的值时,只会使用到当前时间点之前的信息,有效防止了未来信息的泄露。这些技术的应用使得BiTCN-BiGRU模型在处理长序列时间数据时,能够更准确地预测未来的趋势和模式。
3. 双向学习机制的优化
BiGRU部分的双向学习机制是模型另一大创新点。通过在时间序列的正向和反向上分别应用GRU单元,模型能够综合利用过去和未来的信息进行预测。这种机制特别适合于处理那些在时间上具有双向依赖性的序列数据。结合TCN部分的长期依赖捕捉能力,BiTCN-BiGRU模型能够更全面地理解和预测时间序列数据的复杂动态。
4. 网络参数和结构的自动优化
在BiTCN-BiGRU模型的训练过程中,采用了优化算法(如CPO)自动调整网络参数,包括学习率、神经元数量、滤波器数量等。这种自动优化机制不仅减少了手动调参的工作量,还能根据数据特性调整模型结构,从而在不同的时间序列预测任务中达到最佳性能。
使用CPO冠豪猪优化算法创新点在于:
冠豪猪优化器刚刚于2024年1月发表在中科院1区顶级SCI期刊Knowledge-Based Systems上!实验结果表明,NRBO算法在大部分函数上均取得了最优结果!你先用,你就是创新!
之前推文有做过CPO和23年新算法RIME的比较,效果显而易见!
结果展示
迭代曲线:
由于时间关系,这里只跑了6次,实际使用时可跑更多次取得更好的效果!
训练集预测结果:
测试集预测结果:
可以看到,预测值非常贴近实际曲线,甚至可以说是完美一致!
线性拟合图:
误差直方图:
模型结构图:
预测结果指标:
完整代码
点击下方小卡片,后台回复关键字,不区分大小写:
CXYHB
其他更多需求或想要的代码均可点击下方小卡片后后台私信,看到后会秒回~
这篇关于【原创】一键实现CPO-BiTCN-BiGRU预测!24年顶级SCI算法优化!先用先发!直接替换Excel出图!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!