VIO标定开源工具Kalibr源码笔记

2024-02-24 02:44

本文主要是介绍VIO标定开源工具Kalibr源码笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kalibr

  1. 构造样条,与秦开怀老师的公式比较,秦老师的仅仅分析标量,coeff在最后,U在最前:
    r = c o e f f ∗ B a s i s M a t r i x ∗ U r=coeff*BasisMatrix*U r=coeffBasisMatrixU

  2. coeff需要多个列构成。

  3. aslam_backend实现优化。

  4. knots即节点,是控制分段的点。

  5. Bspline表示IMU的bias,BsplinePose表示Pose。

  6. std::pair<double, int> BSpline::ComputeTIndex(double)返回,时刻t所在样条段的时长,和该段对应的索引。

  7. std::pair<double, int> BSpline::computeUAndTIndex(double t)返回u和索引。

  8. Ceres中CostFunction即factor:ceres::Problem::AddResidualBlock()。

  9. 为了估计IMU和相机的时延,需要从IMU的Pose样条取出多段,即不单是采样时刻所在的一段,

int bufferLeft, bufferRight;
//bufferL/R是BasisMatrix的下标,
bufferRight = poseSpline.segmentIndex(frameTime + config_.timeOffsetPadding_);
bufferLeft = poseSpline.segmentIndex(frameTime - config_.timeOffsetPadding_);
// leftCoeff是coeff的多个列的下标,
Eigen::VectorXi leftCoeff = poseSpline.localVvCoefficientVectorIndices(
(poseSpline.timeInterval(bufferLeft).first +
poseSpline.timeInterval(bufferLeft).second) /
2.0);
Eigen::VectorXi rightCoeff = poseSpline.localVvCoefficientVectorIndices(
(poseSpline.timeInterval(bufferRight).first +
poseSpline.timeInterval(bufferRight).second) /
2.0);
// fill the vector with all the indices
int l = leftCoeff(0);
int r = rightCoeff(rightCoeff.size() - 1);
  1. 在重投影误差中,coeff的列数为,
    int valid_coeff = basisMatrices_.size() + pose_splineOrder_ - 1;

根据采样时刻不断更新样条段,并构造样条方程。

int valid_coeff = basisMatrices_.size() + pose_splineOrder_ - 1;
Eigen::MatrixXd pose_coeffs(6, valid_coeff);
for (int i = 0; i < valid_coeff; i++, index++) {Eigen::Map<const Eigen::Matrix<double, 6, 1>> coeff_i(parameters[index]);pose_coeffs.col(i) = coeff_i;
}
std::vector<double>::const_iterator it =std::upper_bound(knots_.begin(), knots_.end(), observationTime);
int segment_id = it - knots_.begin() - 1;
Eigen::MatrixXd coeff = pose_coeffs.middleCols(segment_id, pose_splineOrder_);
Eigen::MatrixXd Basic_matrix = basisMatrices_[segment_id];
Eigen::VectorXd pose_Bt_u_ = Basic_matrix.transpose() * u;
Eigen::VectorXd value = coeff * pose_Bt_u_;
Eigen::Vector3d twb = value.head<3>();
Eigen::Matrix3d Rwb = math::expM(-value.tail<3>());
  1. kalibr使用的旋转矩阵转李代数,即轴角,添加了负号。
Eigen::Vector3d RotationVector::rotationMatrixToParameters(const Eigen::Matrix3d& C) const {Eigen::Vector3d p;// Sometimes, because of roundoff error, the value of tr ends up outside// the valid range of arccos. Truncate to the valid range.double tr =std::max(-1.0, std::min((C(0, 0) + C(1, 1) + C(2, 2) - 1.0) * 0.5, 1.0));double a = acos(tr);if (fabs(a) < 1e-14) {return Eigen::Vector3d::Zero();}p[0] = (C(2, 1) - C(1, 2));p[1] = (C(0, 2) - C(2, 0));p[2] = (C(1, 0) - C(0, 1));double n2 = p.norm();if (fabs(n2) < 1e-14) return Eigen::Vector3d::Zero();
//符号double scale = -a / n2;p = scale * p;return p;
}

IMU bias

class BSplineSegmentMotionError : public ceres::CostFunction {
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWBSplineSegmentMotionError(bsplines::BSpline biasSpline, const int segment,const Eigen::MatrixXd &W) {bias_splineOrder_ = biasSpline.splineOrder();Eigen::MatrixXd Q = biasSpline.segmentQuadraticIntegral(W, segment, 1); // 1 only for bias random walk errorEigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes2(Q);double eps = 1e-10;Eigen::VectorXd S = Eigen::VectorXd((saes2.eigenvalues().array() > eps).select(saes2.eigenvalues().array(), 0));Eigen::VectorXd S_inv =Eigen::VectorXd((saes2.eigenvalues().array() > eps).select(saes2.eigenvalues().array().inverse(), 0));Eigen::VectorXd S_sqrt = S.cwiseSqrt();Eigen::VectorXd S_inv_sqrt = S_inv.cwiseSqrt();S_sqrt_Pt_ = S_sqrt.asDiagonal() * saes2.eigenvectors().transpose();/* S_inv_sqrt_Pt_ = S_inv_sqrt.asDiagonal() * saes2.eigenvectors().transpose(); */}virtual bool Evaluate(double const *const *parameters, double *residuals,double **jacobians) const {Eigen::VectorXd bias_coeffs(3 * bias_splineOrder_);for (int i = 0; i < bias_splineOrder_; i++) {Eigen::Map<const Eigen::Vector3d> coeff_i(parameters[i]);bias_coeffs.segment<3>(3 * i) = coeff_i;}Eigen::Map<Eigen::VectorXd>(residuals, 3 * bias_splineOrder_) =S_sqrt_Pt_ * bias_coeffs;if (jacobians) {for (int i = 0; i < bias_splineOrder_; i++) {if (jacobians[i]) {Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>jacobian_i(jacobians[i], 3 * bias_splineOrder_, 3);jacobian_i = S_sqrt_Pt_.middleCols<3>(3 * i);}}}return true;}void setVariableResidualDim(const std::vector<int> &parameter_block_sizes,const int residualDim) {/* *mutable_parameter_block_sizes() = parameter_block_sizes; */for (auto &isize : parameter_block_sizes)mutable_parameter_block_sizes()->push_back(isize);set_num_residuals(residualDim);}protected:Eigen::MatrixXd S_sqrt_Pt_;int bias_splineOrder_;
};

Ceres Problem问题构建

  1. ceres::Solver::Problem::AddParameterBlock(double *, int) ,优化参数,参数个数
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>
poseCoefficientVecs(6, poseSpline.numVvCoefficients());
for (int i = 0; i < poseCoefficientVecs.cols(); i++) {
poseCoefficientVecs.col(i) = poseSpline.fixedSizeVvCoefficientVector<6>(i);
problem.AddParameterBlock(&poseCoefficientVecs(0, i), 6);
}
  1. 声明std::vector<double*> localParameters std::vector<int> parameter_block_sizes
Eigen::VectorXi dvidxs1 =
poseSpline.localVvCoefficientVectorIndices(timestamp);
for (int i = 0; i < dvidxs1.size(); i++) {localParameters.emplace_back(&poseCoefficientVecs(0, dvidxs1[i]));parameter_block_sizes.emplace_back(6);
}
  1. 声明factor
BSplineGyroscopeError *factor = new BSplineGyroscopeError(imu_ptr->gyro_, gyro_noise, poseSpline, biasSpline, timestamp);

factor中定义

void setVariableResidualDim(const std::vector<int> parameter_block_sizes, const int residualDim) {
/* mutable_parameter_block_sizes() = parameter_block_sizes; */
for (auto &isize : parameter_block_sizes) {mutable_parameter_block_sizes()->push_back(isize);
}
set_num_residuals(residualDim);
}
  1. ceres::Solver::Problem::AddResidualBlock(<factor>, <loss_function>, <local_parameters>)
  2. ceres::Solve()

这篇关于VIO标定开源工具Kalibr源码笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740705

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

sqlite3 命令行工具使用指南

《sqlite3命令行工具使用指南》本文系统介绍sqlite3CLI的启动、数据库操作、元数据查询、数据导入导出及输出格式化命令,涵盖文件管理、备份恢复、性能统计等实用功能,并说明命令分类、SQL语... 目录一、启动与退出二、数据库与文件操作三、元数据查询四、数据操作与导入导出五、查询输出格式化六、实用功

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔