VIO标定开源工具Kalibr源码笔记

2024-02-24 02:44

本文主要是介绍VIO标定开源工具Kalibr源码笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kalibr

  1. 构造样条,与秦开怀老师的公式比较,秦老师的仅仅分析标量,coeff在最后,U在最前:
    r = c o e f f ∗ B a s i s M a t r i x ∗ U r=coeff*BasisMatrix*U r=coeffBasisMatrixU

  2. coeff需要多个列构成。

  3. aslam_backend实现优化。

  4. knots即节点,是控制分段的点。

  5. Bspline表示IMU的bias,BsplinePose表示Pose。

  6. std::pair<double, int> BSpline::ComputeTIndex(double)返回,时刻t所在样条段的时长,和该段对应的索引。

  7. std::pair<double, int> BSpline::computeUAndTIndex(double t)返回u和索引。

  8. Ceres中CostFunction即factor:ceres::Problem::AddResidualBlock()。

  9. 为了估计IMU和相机的时延,需要从IMU的Pose样条取出多段,即不单是采样时刻所在的一段,

int bufferLeft, bufferRight;
//bufferL/R是BasisMatrix的下标,
bufferRight = poseSpline.segmentIndex(frameTime + config_.timeOffsetPadding_);
bufferLeft = poseSpline.segmentIndex(frameTime - config_.timeOffsetPadding_);
// leftCoeff是coeff的多个列的下标,
Eigen::VectorXi leftCoeff = poseSpline.localVvCoefficientVectorIndices(
(poseSpline.timeInterval(bufferLeft).first +
poseSpline.timeInterval(bufferLeft).second) /
2.0);
Eigen::VectorXi rightCoeff = poseSpline.localVvCoefficientVectorIndices(
(poseSpline.timeInterval(bufferRight).first +
poseSpline.timeInterval(bufferRight).second) /
2.0);
// fill the vector with all the indices
int l = leftCoeff(0);
int r = rightCoeff(rightCoeff.size() - 1);
  1. 在重投影误差中,coeff的列数为,
    int valid_coeff = basisMatrices_.size() + pose_splineOrder_ - 1;

根据采样时刻不断更新样条段,并构造样条方程。

int valid_coeff = basisMatrices_.size() + pose_splineOrder_ - 1;
Eigen::MatrixXd pose_coeffs(6, valid_coeff);
for (int i = 0; i < valid_coeff; i++, index++) {Eigen::Map<const Eigen::Matrix<double, 6, 1>> coeff_i(parameters[index]);pose_coeffs.col(i) = coeff_i;
}
std::vector<double>::const_iterator it =std::upper_bound(knots_.begin(), knots_.end(), observationTime);
int segment_id = it - knots_.begin() - 1;
Eigen::MatrixXd coeff = pose_coeffs.middleCols(segment_id, pose_splineOrder_);
Eigen::MatrixXd Basic_matrix = basisMatrices_[segment_id];
Eigen::VectorXd pose_Bt_u_ = Basic_matrix.transpose() * u;
Eigen::VectorXd value = coeff * pose_Bt_u_;
Eigen::Vector3d twb = value.head<3>();
Eigen::Matrix3d Rwb = math::expM(-value.tail<3>());
  1. kalibr使用的旋转矩阵转李代数,即轴角,添加了负号。
Eigen::Vector3d RotationVector::rotationMatrixToParameters(const Eigen::Matrix3d& C) const {Eigen::Vector3d p;// Sometimes, because of roundoff error, the value of tr ends up outside// the valid range of arccos. Truncate to the valid range.double tr =std::max(-1.0, std::min((C(0, 0) + C(1, 1) + C(2, 2) - 1.0) * 0.5, 1.0));double a = acos(tr);if (fabs(a) < 1e-14) {return Eigen::Vector3d::Zero();}p[0] = (C(2, 1) - C(1, 2));p[1] = (C(0, 2) - C(2, 0));p[2] = (C(1, 0) - C(0, 1));double n2 = p.norm();if (fabs(n2) < 1e-14) return Eigen::Vector3d::Zero();
//符号double scale = -a / n2;p = scale * p;return p;
}

IMU bias

class BSplineSegmentMotionError : public ceres::CostFunction {
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWBSplineSegmentMotionError(bsplines::BSpline biasSpline, const int segment,const Eigen::MatrixXd &W) {bias_splineOrder_ = biasSpline.splineOrder();Eigen::MatrixXd Q = biasSpline.segmentQuadraticIntegral(W, segment, 1); // 1 only for bias random walk errorEigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes2(Q);double eps = 1e-10;Eigen::VectorXd S = Eigen::VectorXd((saes2.eigenvalues().array() > eps).select(saes2.eigenvalues().array(), 0));Eigen::VectorXd S_inv =Eigen::VectorXd((saes2.eigenvalues().array() > eps).select(saes2.eigenvalues().array().inverse(), 0));Eigen::VectorXd S_sqrt = S.cwiseSqrt();Eigen::VectorXd S_inv_sqrt = S_inv.cwiseSqrt();S_sqrt_Pt_ = S_sqrt.asDiagonal() * saes2.eigenvectors().transpose();/* S_inv_sqrt_Pt_ = S_inv_sqrt.asDiagonal() * saes2.eigenvectors().transpose(); */}virtual bool Evaluate(double const *const *parameters, double *residuals,double **jacobians) const {Eigen::VectorXd bias_coeffs(3 * bias_splineOrder_);for (int i = 0; i < bias_splineOrder_; i++) {Eigen::Map<const Eigen::Vector3d> coeff_i(parameters[i]);bias_coeffs.segment<3>(3 * i) = coeff_i;}Eigen::Map<Eigen::VectorXd>(residuals, 3 * bias_splineOrder_) =S_sqrt_Pt_ * bias_coeffs;if (jacobians) {for (int i = 0; i < bias_splineOrder_; i++) {if (jacobians[i]) {Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>jacobian_i(jacobians[i], 3 * bias_splineOrder_, 3);jacobian_i = S_sqrt_Pt_.middleCols<3>(3 * i);}}}return true;}void setVariableResidualDim(const std::vector<int> &parameter_block_sizes,const int residualDim) {/* *mutable_parameter_block_sizes() = parameter_block_sizes; */for (auto &isize : parameter_block_sizes)mutable_parameter_block_sizes()->push_back(isize);set_num_residuals(residualDim);}protected:Eigen::MatrixXd S_sqrt_Pt_;int bias_splineOrder_;
};

Ceres Problem问题构建

  1. ceres::Solver::Problem::AddParameterBlock(double *, int) ,优化参数,参数个数
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>
poseCoefficientVecs(6, poseSpline.numVvCoefficients());
for (int i = 0; i < poseCoefficientVecs.cols(); i++) {
poseCoefficientVecs.col(i) = poseSpline.fixedSizeVvCoefficientVector<6>(i);
problem.AddParameterBlock(&poseCoefficientVecs(0, i), 6);
}
  1. 声明std::vector<double*> localParameters std::vector<int> parameter_block_sizes
Eigen::VectorXi dvidxs1 =
poseSpline.localVvCoefficientVectorIndices(timestamp);
for (int i = 0; i < dvidxs1.size(); i++) {localParameters.emplace_back(&poseCoefficientVecs(0, dvidxs1[i]));parameter_block_sizes.emplace_back(6);
}
  1. 声明factor
BSplineGyroscopeError *factor = new BSplineGyroscopeError(imu_ptr->gyro_, gyro_noise, poseSpline, biasSpline, timestamp);

factor中定义

void setVariableResidualDim(const std::vector<int> parameter_block_sizes, const int residualDim) {
/* mutable_parameter_block_sizes() = parameter_block_sizes; */
for (auto &isize : parameter_block_sizes) {mutable_parameter_block_sizes()->push_back(isize);
}
set_num_residuals(residualDim);
}
  1. ceres::Solver::Problem::AddResidualBlock(<factor>, <loss_function>, <local_parameters>)
  2. ceres::Solve()

这篇关于VIO标定开源工具Kalibr源码笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740705

相关文章

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

MySQL慢查询工具的使用小结

《MySQL慢查询工具的使用小结》使用MySQL的慢查询工具可以帮助开发者识别和优化性能不佳的SQL查询,本文就来介绍一下MySQL的慢查询工具,具有一定的参考价值,感兴趣的可以了解一下... 目录一、启用慢查询日志1.1 编辑mysql配置文件1.2 重启MySQL服务二、配置动态参数(可选)三、分析慢查

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过